The Effect of TiO$_2$ Nanoparticles on Mechanical Properties of Poly Methyl Methacrylate Nanocomposites

S. Mosalman, S. Rashahmadi, R. Hasanzadeh*

Mechanical Engineering Department, Urmia University, Urmia, Iran

A B S T R A C T

Various applications of nanocomposites were a good motivation to start a study on this wide spreading field of science. Current research is an investigation on incorporating different percentages of TiO$_2$ nanoparticle as reinforcement to a base material which here is poly methyl methacrylate (PMMA). In this study various percentages of TiO$_2$ (0.5, 1 and 2 wt%) were added to pure PMMA and effect of this combination on the mechanical properties of produced composite by performing several tests was investigated and compared to the base material. For producing samples, materials were compounded by melting compounding method using a twin screw extruder followed by injecting molding process. SEM images showed that almost all percentage of TiO$_2$ nanoparticles have been mixed suitably through base matrix. Rockwell hardness R, impact and tensile tests were carried out on all specimens. Almost all of the results illustrated that combination of TiO$_2$ nanoparticle with PMMA, improves mechanical properties of composite. The results also indicated amazing effect of TiO$_2$ nanoparticles on improvements of impact and flexural strengths. Highest recorded impact strength showed 229% increase in samples containing 2 wt% nanoparticles compared to the base material.

1. INTRODUCTION

Queueing Recently, nanotechnology has been extensively studied in academic and industrial communities. Nanostructured materials have recently attracted lot of attention to researchers because of their potential uses in the development of new nano-devices. Nanoparticles are materials with at least one dimension between 1 and 100 nm. In such small range, materials have unique mechanical, chemical and physical properties. Nanocomposites are the materials with a base matrix and one or more nanoparticles as reinforcements. Basic matrix of the nanocomposites may be polymeric, metallic or even ceramic. Reinforcements are usually nano-size powdered metal oxides [1-4], single-walled and multi-walled carbon nanotubes [5, 6] and/or layered materials such as several types of clays [7].

Among nanocomposites, most attention is attracted to polymer-matrix composites due to their outstanding and considerable mechanical [8, 9], thermal [8, 10], physical [11], electrical [12] and optical [13] properties. Many researches have conducted research on the preparation and development of these materials. Different polymers have been used as matrix to produce nanocomposites and their mechanical, physical, morphological and thermal properties have been investigated.

Poly methyl methacrylate (PMMA) is a synthetic resin produced from the polymerization of methyl methacrylate and also one of the most frequently used commercial polymers with good dimensional stability, high mechanical strength, thermal stability, outdoor wearing properties and minimal inflammatory response. It is an important thermoplastic material with extensive applications in many technological fields due to its unique optical [14, 15], mechanical [16], thermal [15] and electrical [16] properties. Owing to these
characteristics, PMMA is among the most extensively studied polymers for nano/micro composites [17, 18].

Recently, lot of research works on the mechanical and physical properties of nano composites is going on all over the world. Benjamin et al. [19] worked on mechanical properties of PMMA/Al2O3 Nanocomposites. PMMA/Alumina nanoparticles were produced by incorporating alumina nanoparticles, synthesized using the forced gas condensation method, into methyl methacrylate. At an optimum weight percent, the resulting nanocomposites showed, on average, a 60% increase in the strain-to-failure and the appearance of a well-defined yield point when tested in uniaxial tension. Al-Kawaz et al. [20] investigated tribological and mechanical properties of acrylic-based nanocomposite coatings reinforced with PMMA-grafted-MWCNT. They studied the tribological performances of 20nm coatings of these nanocomposites deposited on neat PMMA. The coefficient of friction was found to relatively decrease with the increase of the weight fraction of polymer grafted to the surface of MWCNT. Moreover, the elastic modulus also increased with increasing the weight fraction of PMMA coated MWCNT. Liu et al. [21] investigated the synthesis and characterization of PMMA/Al2O3 composite particles by in situ emulsion polymerization. They found that only when the concentration of sodium dodecyl sulfate (SDS) was much higher than its critical micelle concentration, could PMMA/Al2O3 composite particles with high percentage of grafting (PG) be prepared. Compared to Al2O3, thermal stability and dispersibility of the composite particles showed marked improvement. Bezy et al. [22] studied the effect of TiO2 nanoparticles on mechanical properties of epoxy-resin systems and showed development in maximum flexural modulus. In this study, titanium dioxide nanoparticle was prepared by sol gel method, using titanium tetra isopropoxide and acetic acid. Mechanical studies of developed polymer sheets revealed much variation by incorporation of TiO2. This is probably due to different dispersion of nanoparticles in the epoxy resin. Navidfar et al. [23] studied the influence of processing condition and carbon nanotube on mechanical properties of injection molded multi-walled carbon nanotube (MWCNT)/ poly (methyl methacrylate) nanocomposites. The results revealed when MWCNT concentration are increased from 0 to 1.5 wt %, tensile strength and elongation at break reduced about 30 and 40%, respectively, but a slight increase in hardness was observed. In addition, highest impact strength appears in the nanocomposite with 1 wt % MWCNT.

In the present study, the effect of addition of TiO2 nanoparticles as reinforcement in various weight fractions on mechanical properties of poly methyl methacrylate (PMMA) was studied. For this purpose, materials were melt compounded using twin-screw extruder and then samples were produced by injection molding. Mechanical tests including flexural, impact, tensile and hardness were carried out according to appropriate standards. The results were presented and the effect of TiO2 nanoparticles on mentioned properties was investigated.

2. EXPERIMENTAL DETAILS

2.1. Materials and Equipment In this study, poly methyl methacrylate (PMMA) with melt flow index of 1.9ml/10min (230°C ×3.8kg) and with Trade name of ACRYREX CM-205 was used as base matrix and TiO2 nanoparticles as reinforcement. PMMA is produced at Chi Mei Corporation and TiO2 at US Nano Corporation with purity of 99% and nanoparticle size of 20 nm.

A ZSK-25 (Coperion Werner & Pfleiderer, Germany) twin-screw extruder with 10kg/h extruding capacity and 25mm extruder diameter was used for melt compounding of the materials. Mechanical test specimens were injected using an NBM HXF-128 injection molding machine [with L/D ratio of 21.1, screw diameter of 37 mm and maximum injection pressure of 196MPa].

A Universal STM-150 tensile testing machine (SANTAM) with maximum capacity of 50kN and extension resolution of 0.05mm and a SIT-200 impact test machine (SANTAM) used for carrying out tensile and Charpy impact tests, respectively. An Indentec universal hardness testing machine (Zwick/Roell, England) was employed in order to carry out the Rockwell hardness tests. Also, a GOTECH AI-7000-M machine was used for the bending test. For observing nano-structure of specimen a Hitachi S-4160 FE-SEM (field emission scanning electron microscopy) was used for SEM test.

2.2. Preparation of Specimens Before compounding, PMMA was dried at 120°C for 2h using an industrial oven. Then, a 2 percent by weight master batch (2 wt% nanoparticle and 98 wt% PMMA) was extruded with twin-screw extruder machine at a screw speed of 250 rpm and melt temperature of 210°C. In the next step, 1 wt% and 0.5 wt% granules were produced by diluting and adding PMMA to 2 wt% granules till defined percentage by weight ratios be prepared. Subsequently, the prepared nanocomposite pellets were dried again in the hopper of injection molding machine at 80°C for 2 h. Then, experimental specimens were produced by injecting the melted pellets into the mold (see Figure 1). The processing parameters of injection molding are indicated in Table 1.

2.3. Mechanical Properties Tensile test is one of the most important fundamental tests of a material’s
mechanical response to investigate the mechanical properties of materials. Tensile strength is the maximum tensile stress that a material can endure before it undergoes cracking, fracture or plastic deformation. Tensile tests were carried out based on ASTM D638 standard at room temperature. At least three samples were examined for each trial and average tensile strength of the results is reported as tensile strength of a specimen. A universal Indentec hardness testing machine was used to perform hardness tests as a suitable surficial mechanical property of specimens. At least five points of a sample were examined and the average of recorded data was reported as the Rockwell-R hardness of the specimens based on ASTM-D785 standard at room temperature. Specimens were notched with angle of 60° and depth of 3 mm for impact tests (see Figure 2).

The tests were carried out via a SIT-200 machine according to ASTM D6110 standard. At least three specimen of each sample were tested and reported results are the average of these three specimen.

3. RESULTS AND DISCUSSION

3.1. SEM Results Figure 3 shows SEM cross-section images of specimens. By comparing the base material with TiO₂ contained ones, it is clear that combination of nanoparticles is suitable and monotonous which means no agglomeration was observed in the structures of nanocomposites. This monotonousness in the structure of material promises increasing in the mechanical properties of nanocomposite specimens compared to pure PMMA specimens which will be studied in coming sections.

TABLE 1. The parameters of the injection molding

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection temperature (°C)</td>
<td>260</td>
</tr>
<tr>
<td>Injection pressure (MPa)</td>
<td>80</td>
</tr>
<tr>
<td>Holding pressure (MPa)</td>
<td>60</td>
</tr>
<tr>
<td>Holding pressure time (s)</td>
<td>2</td>
</tr>
<tr>
<td>Cooling time (s)</td>
<td>25</td>
</tr>
<tr>
<td>Mold temperature (°C)</td>
<td>60</td>
</tr>
<tr>
<td>Shot size (cm³)</td>
<td>20</td>
</tr>
</tbody>
</table>

Figure 1. Produced nanocomposite samples

Figure 2. Notched specimens for Charpy impact test

Figure 3. SEM cross-section view of a) Pure PMMA, b) PMMA/0.5 wt% TiO₂, c) PMMA/1 wt% TiO₂ and d) PMMA/2 wt% TiO₂
3. 1. Flexural Strength The first test carried out on the specimens was bending test. The loading rate was set on 5mm/s and the temperature of testing environment was 25°C based on standard test temperature. According to the results (see Table 2), flexural strength of specimen with 0.5 wt% was increased, but specimens containing 1 wt% and 2 wt% TiO2 nanoparticles almost stayed unchanged compared to pure PMMA. This increase is because of the unique properties of nanoparticles. Figure 4 shows force-displacement curves for PMMA-0.5wt% TiO2 and pure PMMA.

3. 2. Impact Strength Impact test was done on the specimens using Charpy method. Cross section of each specimen was measured. According to the test results (see Table 3), all specimens showed increasing behavior in the impact strength as shown by Ghasemi et al. [24] and Srivastava et al. [25] for other polymers as PP and Epoxy, respectively.

3. 3. Rockwell Hardness R The hardness tests were performed according to Rockwell-R method. The results are given in Table 4. As seen in this table, hardness of base material is 76.60 HRR, and all specimens containing various weight fractions of nanoparticles showed increase in hardness. This could be because of microstructural bonds between base matrix and added nanoparticles. These bonds endure the applied force instead of base matrix and because of this effect, more energy is needed to break these bonds.

Table 2. Flexural strength of nanocomposite samples

<table>
<thead>
<tr>
<th>Material</th>
<th>Flexural strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure PMMA</td>
<td>4.020</td>
</tr>
<tr>
<td>PMMA containing 0.5 wt% TiO2</td>
<td>4.171</td>
</tr>
<tr>
<td>PMMA containing 1 wt% TiO2</td>
<td>3.979</td>
</tr>
<tr>
<td>PMMA containing 2 wt% TiO2</td>
<td>3.989</td>
</tr>
</tbody>
</table>

Table 3. Impact strength of nanocomposite samples

<table>
<thead>
<tr>
<th>Material</th>
<th>Impact strength (kJ/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure PMMA</td>
<td>8.11</td>
</tr>
<tr>
<td>PMMA containing 0.5 wt% TiO2</td>
<td>9.88</td>
</tr>
<tr>
<td>PMMA containing 1 wt% TiO2</td>
<td>15.72</td>
</tr>
<tr>
<td>PMMA containing 2 wt% TiO2</td>
<td>26.68</td>
</tr>
</tbody>
</table>

Figure 4. Comparison between flexural test results of pure PMMA and PMMA containing 0.5 wt% TiO2

According to Figure 5, 21.8%, 93.8% and 228.9% increase in the impact strength of samples containing 0.5, 1 and 2 wt% TiO2 nanoparticles were observed, respectively. For specimens with 2 wt% TiO2, amazing number of 229% verifies incredible effect of added nanoparticles on the impact strength of pure polymer.

3. 4. Tensile Test For the tensile test, rate of loading is set to 10 mm/s. This study will focus on 2 important properties (Young’s modulus and ultimate tensile strength) obtained from tensile test. The results are based on ASTM D638 standard.

3. 4. 1. Young’s Modulus First outcome of tensile test is Young’s Modulus. Based on Young’s modulus results (see Table 5), adding nanoparticles at various percentages of 0.5, 1 and 2 wt% shows increase in the Young’s modulus; The same influence on Epoxy has been shown by Srivastava and Tiwari [25]. The increase in Young’s modulus is uniform (see Figure 6) with increasing the percentage of TiO2 nanoparticles. This proceeding confirms TiO2 nanoparticles reinforcement effect on the base material.
TABLE 5. Young’s modulus of nanocomposite samples

<table>
<thead>
<tr>
<th>Material</th>
<th>Young’s modulus (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure PMMA</td>
<td>2914</td>
</tr>
<tr>
<td>PMMA containing 0.5 wt% TiO₂</td>
<td>2949</td>
</tr>
<tr>
<td>PMMA containing 1 wt% TiO₂</td>
<td>3023</td>
</tr>
<tr>
<td>PMMA containing 2 wt% TiO₂</td>
<td>3112</td>
</tr>
</tbody>
</table>

Figure 6. Linearly increasing behavior of Young’s modulus

3.4.2. Tensile Strength According to results of tensile test (see Table 6), it is clear that all specimens containing nanoparticles showed reduction in tensile strength as shown in literature [25] for Epoxy. Another noticeable result obtained from mechanical behavior of the nanocomposites is a considerable reduction in the elongation at break of the samples containing nanoparticles in tensile test. Figure 7 demonstrates stress-strain curves and elongations at break for pure and nanoparticle filled specimens under tensile test.

TABLE 6. Tensile strength of nanocomposite samples

<table>
<thead>
<tr>
<th>Material</th>
<th>Tensile strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure PMMA</td>
<td>79.16</td>
</tr>
<tr>
<td>PMMA containing 0.5 wt% TiO₂</td>
<td>75.64</td>
</tr>
<tr>
<td>PMMA containing 1 wt% TiO₂</td>
<td>38.17</td>
</tr>
<tr>
<td>PMMA containing 2 wt% TiO₂</td>
<td>48.98</td>
</tr>
</tbody>
</table>

Figure 7. True Stress-Strain Curves of tensile test for nanocomposite samples

As shown in Figure 7, a simple calculation shows more than 50% reduction in elongation for specimen with 2 wt% of TiO₂ and almost 70% for 1 wt% of TiO₂. But, for 0.5 wt% of TiO₂ this reduction is about 5%.

4. CONCLUSION

In this research, the effect of incorporating different amounts of TiO₂ nanoparticles on PMMA was investigated. The results of SEM tests showed that nanoparticles were distributed in polymeric matrix appropriately in all contents. Four mechanical tests were carried out on samples, and following conclusions were obtained:

1. Flexural strength of all specimens almost stayed unchanged. Samples with 0.5% wt. TiO₂ showed 3.75% by mean improvement in the flexural strength compared to the pure PMMA.
2. Impact strength of all specimens increased as well, and this increasing was uniform. Specimens with 2% wt. TiO₂ showed the highest impact strength. Improvement was about 229% (compared to the base material).
3. Results of hardness test illustrated that Rockwell-R Hardness of all specimens improved. The highest was for samples with 2% wt. TiO₂.
4. Young’s modulus for all samples was improved. Again, the highest was for samples with 2% wt. TiO₂.

True stress-strain curves of specimens indicated that ultimate tensile strength of all samples has reduced. This could be because of agglomerating effect. The agglomerated compounds can act as stress concentrating centers in the matrix and adversely affect the mechanical properties of the polymerized material. The additional TiO₂ nanoparticles act as impurities and the tensile strength decreases as a result of the extra additive.

5. REFERENCES

The Effect of TiO$_2$ Nanoparticles on Mechanical Properties of Poly Methyl Methacrylate Nanocomposites

S. Mosalman, S. Rashahmadi, R. Hasanzadeh

Mechanical Engineering Department, Urmia University, Urmia, Iran

Paper Info

Paper history:
Received 11 November 2016
Received in revised form 09 January 2017
Accepted 10 March 2017

Keywords:
Poly Methyl Methacrylate Nanocomposite
TiO$_2$ Nanoparticle
Impact Strength
Flexural Strength

Research Note

چکیده

کاربردهای وسیع‌تری نانوکامپوزیت‌ها، محور مناسبی برای شروع یک مطالعه در این زمینه گسترده‌ای علمی می‌باشد. تحقیق حاضر، یک مطالعه روی ارائه می‌شود. در این تحقیق درصدی از متفاوت‌ترین نانوذرات با روش تیتانیوم هاپتوترسیپن‌دار و 2 درصد به پلی‌میل متفاوت‌ترین نانوذرات با روش خواص مکانیکی کامپوزیت‌ها تولید شده بررسی شد. برای تولید نمونه‌ها، مواد به روش اختلاف دریبی توسط دستگاه اکسترودر دوماردونه ترکیب و سپس توسط دستگاه تزریق، قابل‌کردن شدند. نتایج میکروسکوپ الکترونی رشته مشخص ساخته‌شده نانوذرات اکسید تیتانیوم گروهی در تمامی درصدی از وزن به صورت مناسب داخل پلیمر پایه پخش شده است. آزمون‌های مکانیکی انجام شده شامل خمش، سختی راکل، ضریب و کشش مشابه است. مطالعات اولیه نشان داد که تقریباً نتایج معمول آزمون‌های این امر مستند که افزودن نانوذرات به پلیمر می‌باشد از نظر خواص مکانیکی آن می‌شود. مطالعات عمیق‌تری در میان بین نانوذرات اکسید تیتانیوم به صورت چشم‌گیر خواص ضریب و کشش پلی‌میل متفاوت‌ترین نانوذرات را تحت‌الشعاع قرار داده است. بهبود 25 درصد بهبود در استحکام ضریب و کشش نمونه‌های حاوی 2 درصد وزن نانوذرات اکسید تیتانیوم مشاهده گردید.