Two-fluid Electrokinetic Flow in a Circular Microchannel

A Jabari Moghadam*

Department of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran

Paper history:
Received 29 May 2016
Received in revised form 17 July 2016
Accepted 25 August 2016

Abstract

The two-fluid flow is produced by the combined effects of electrosomotic force in a conducting liquid and pressure gradient force in a non-conducting liquid. The Poisson-Boltzmann and Navier-Stokes equations are solved analytically; and the effects of governing parameters are examined. Poiseuille number increases with increasing the parameters involved. In the absence of pressure gradient, the two fluids demonstrate plug-like velocity profiles. The results reveal that the two-fluid electroosmotic pumping flow rate is feasible for a relatively small interface zeta potential: or large wall zeta potential and electrokinetic radius. For particular values of the governing parameters, the flow rate approaches a specific value as the electrokinetic radius tends to infinity. A back flow (a negative value of the resultant flow rate) occurs for sufficiently small values of the wall zeta potential or sufficiently large values of the interface zeta potential (even in the case of pressure-assisted flow). Zero-value flow rates may also be attained.

*Corresponding Author’s Email: alijabari@shahroodut.ac.ir (A. Jabari Moghadam)

NOMENCLATURE

<table>
<thead>
<tr>
<th>Variable</th>
<th>Symbol</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure gradient</td>
<td>(\frac{dp}{dz})</td>
<td>[Pa/m]</td>
</tr>
<tr>
<td>Electron charge</td>
<td>(e)</td>
<td>[C]</td>
</tr>
<tr>
<td>Axial electric field strength</td>
<td>(E)</td>
<td>[V/m]</td>
</tr>
<tr>
<td>Friction factor</td>
<td>(f)</td>
<td></td>
</tr>
<tr>
<td>Modified Bessel function of the first kind of order</td>
<td>(I_\nu)</td>
<td></td>
</tr>
<tr>
<td>Modified Bessel function of the second kind of order</td>
<td>(K_\nu)</td>
<td></td>
</tr>
<tr>
<td>Boltzmann constant</td>
<td>(k_B)</td>
<td>[J/K]</td>
</tr>
<tr>
<td>Bulk ion concentration</td>
<td>(n_s)</td>
<td>[m(^{-3})]</td>
</tr>
<tr>
<td>Poiseuille number</td>
<td>(P_0)</td>
<td></td>
</tr>
<tr>
<td>Liquid-2 flow rate ratio</td>
<td>(q)</td>
<td></td>
</tr>
<tr>
<td>Dimensionless volumetric flow rate</td>
<td>(Q)</td>
<td></td>
</tr>
<tr>
<td>Radius of the micro-channel</td>
<td>(R)</td>
<td>[m]</td>
</tr>
<tr>
<td>Radius of interface</td>
<td>(R_n)</td>
<td>[m]</td>
</tr>
<tr>
<td>Dimensionless radial coordinate</td>
<td>(\mathcal{R})</td>
<td></td>
</tr>
<tr>
<td>Dimensionless radius of interface</td>
<td>(R_e)</td>
<td></td>
</tr>
<tr>
<td>Reynolds number</td>
<td>(R_e)</td>
<td></td>
</tr>
<tr>
<td>Absolute temperature</td>
<td>(T)</td>
<td>[K]</td>
</tr>
<tr>
<td>Helmholtz-Smoluchowski velocity</td>
<td>(U_{Hs})</td>
<td>[m/s]</td>
</tr>
<tr>
<td>Pressure-driven reference velocity</td>
<td>(U_{dp})</td>
<td>[m/s]</td>
</tr>
<tr>
<td>Dimensionless axial velocity</td>
<td>(\nu)</td>
<td></td>
</tr>
<tr>
<td>Axial velocity</td>
<td>(V)</td>
<td>[m/s]</td>
</tr>
</tbody>
</table>

Greek symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu)</td>
<td>Dimensionless electrical radius</td>
</tr>
<tr>
<td>(\xi)</td>
<td>Dimensionless electrical potential</td>
</tr>
<tr>
<td>(\zeta)</td>
<td>Zeta potential at the interface [V]</td>
</tr>
<tr>
<td>(\zeta_w)</td>
<td>Zeta potential at the wall [V]</td>
</tr>
<tr>
<td>(\rho)</td>
<td>Fluid density [kg/m(^3)]</td>
</tr>
<tr>
<td>(\rho_n)</td>
<td>Net volume charge density [C m(^{-3})]</td>
</tr>
<tr>
<td>(\nabla)</td>
<td>Dimensionless interface charge density</td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>Electric permittivity of solution [F/m]</td>
</tr>
<tr>
<td>(\epsilon_r)</td>
<td>Dimensionless electric potential</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Liquid dynamic viscosity [kg/m.s]</td>
</tr>
<tr>
<td>(\mu_n)</td>
<td>Conducting, non-conducting liquids</td>
</tr>
</tbody>
</table>

PAPER INFO

Accepted Manuscript

Keywords:
Electroosmosis
Pressure-gradient
Two-fluid stratified Flow
Exact Solution

A B S T R A C T

The two-fluid flow is produced by the combined effects of electrosomotic force in a conducting liquid and pressure gradient force in a non-conducting liquid. The Poisson-Boltzmann and Navier-Stokes equations are solved analytically; and the effects of governing parameters are examined. Poiseuille number increases with increasing the parameters involved. In the absence of pressure gradient, the two fluids demonstrate plug-like velocity profiles. The results reveal that the two-fluid electroosmotic pumping flow rate is feasible for a relatively small interface zeta potential: or large wall zeta potential and electrokinetic radius. For particular values of the governing parameters, the flow rate approaches a specific value as the electrokinetic radius tends to infinity. A back flow (a negative value of the resultant flow rate) occurs for sufficiently small values of the wall zeta potential or sufficiently large values of the interface zeta potential (even in the case of pressure-assisted flow). Zero-value flow rates may also be attained.

*Corresponding Author’s Email: alijabari@shahroodut.ac.ir (A. Jabari Moghadam)
1. INTRODUCTION

Unlike flows in conventional macro-sized channels, the analysis of flow in micro-channels has to take into consideration the presence of the electric double layer (EDL), which is formed as a result of the interaction between the charged wall surface and ionized solution. The fluid is then moved by applying an electric field to the EDL. Since the surface to volume ratio in microscale is large, electroosmotic flow (EOF) would be more efficient than ordinary pressure-driven flows. EOF micropumps contain no moving parts and are relatively easy to integrate in microfluidic circuits during fabrication. Microfluidic devices utilizing EOF have great applications with medical research as well as some other fields such as physics and chemistry (in fuel cells, soil analysis and processing, and chemistry analysis). Understanding the electrokinetic-driven flows in various geometries and the complete control of the flows at micro-scales will allow the construction of highly complex and efficient microsystems, where fluids can circulate in a controlled manner, performing a large number of tasks in a maze of microchannel [1, 2].

Extensive studies have been conducted to explore the behavior of electro-osmotic flow in micro-scale devices. Squires and Bazant [3] described the general phenomenon of induced-charge electro-osmosis (ICEO) which includes a wide variety of techniques for driving micro-flows around conducting or dielectric surfaces using AC or DC electric fields. Arulanandam and Li [4] studied the liquid movement in a rectangular micro-channel by electro-osmotic pumping. They used a 2D Poisson-Boltzmann equation and the 2D momentum equation to model the problem. The flow field and volumetric flow rate were presented as functions of the zeta potential, the ionic concentration, the aspect ratio, and the applied electrical field. Dutta and Beskok [5] presented analytical results for velocity distribution, mass flow rate, pressure gradient, wall shear stress, and vorticity in mixed electro-osmotic/pressure driven flows for two-dimensional straight channel geometry. Tang et al. [6] investigated the electro-osmotic flow in axisymmetric micro-ducks. They presented axisymmetric lattice Boltzmann models to solve the electric potential distribution and the velocity field. Wang and Kang [7] presented a numerical solution based on coupled lattice Boltzmann methods for electrokinetic flows in micro-channels. Xuan and Li [8] used a semi-analytical approach to investigate electro-osmotic flows in micro-channels with arbitrary cross-sectional geometry and distribution of wall charge. Kang et al. [9] solved the electro-osmotic flow problem in a cylindrical channel for only sinusoidal waveform by the Green’s function method. Tsao [10] studied the electroosmotic flow through an annulus under the constant electric field condition. Kang et al. [11] investigated the steady-state electroosmotic flow in a capillary annulus under the situation when the two cylindrical walls carry high zeta potentials. In their study, the non-linear term of the Poisson-Boltzmann equation (i.e. hyperbolic sine) has been approximated by some proposed relations.

Erickson and Li [12] presented a combined theoretical and numerical approach to investigate the time periodic electro-osmotic flow in a rectangular micro-channel. Comprehensive models for a slit channel have also been presented by Dutta and Beskok [13] who developed an analytical model for an applied sinusoidal electric field. Green et al. [14] experimentally observed peak flow velocities on the order of hundreds of micrometers per second near a set of parallel electrodes subject to two AC fields, 180 degrees out-of-phase with each other. The effect was subsequently modeled using a linear double layer analysis by Gonzalez et al. [15]. Using a similar principal, both Brown et al. [16] and Studer et al. [17] presented microfluidic devices that incorporated arrays of non-uniformly sized embedded electrodes which, when subject to an AC field, were able to generate a bulk fluid motion. Moghadam [18-20] obtained exact solutions of AC electroosmotic flows in circular and annular microchannels by using the Green’s function method. The flow fields excited by various time-periodic electric currents were also examined. Moghadam and Akbarzadeh [21] examined time-periodic EOF of a non-Newtonian fluid in microchannels using a numerical scheme. Also, the problem of thermally-developing electroosmotic flow in a circular microchannel [22] was studied under DC electric field; and some analytic solutions were obtained. Wang et al. [23] studied the mixing enhancement by the electroosmotic flow in microchannels using the Lattice-Boltzmann methods. Also, the numerical results of electroosmotic flows in micro- and nanofluidics using a Lattice Poisson-Boltzmann method were presented [24] to solve the non-linear governing equations.

Some liquids, such as non-polar fluids with very low electrical conductivity, cannot form EDLs; hence, they cannot be directly pumped using electroosmosis. A conducting pumping liquid driven by EOF can pull a non-conducting working fluid by viscous forces. In some biochemical analysis, on the other hand, EOF pumps may not be suitable to be used directly with the water solutions, because the voltage applied can lead to electrochemical decomposition of the solute, fluctuation of the buffer solution pH and generation of gases [25]. In these cases, an EOF, which is driven thru layers of the conducting liquid, is utilized to pump a non-conducting liquid. This allows for new types of analysis in the field of micro Total Analysis Systems (μTAS) which may prove important in the drug industry and for environmental monitoring. The characteristics flow rate and pressure of the pump are in the range of nL/s and
is a non-conducting liquid and the outer fluid is a conducting liquid. Electric double layers form at the wall as well as at the liquid-liquid interface, which are in contact with the high EO mobility liquid. The zeta potential at the wall and at the interface are \(\zeta \) and \(\zeta' \), respectively. The electroosmosis body force (applied on the liquid 1) and the pressure-gradient body force (applied on the liquid 2) are along the z-direction.

2. 1. Potential Field

The electric potential distribution for a symmetric electrolyte due to the presence of EDL is determined by the Poisson-Boltzmann equation [34, 35]:

\[
d^2\psi + \frac{1}{r} \frac{d\psi}{dr} = \frac{2Ne_0 \sinh \left(\frac{Ne\psi}{k_B T} \right)}{\epsilon}
\]

(1)

where, \(\psi \), \(N \), \(e \), \(n_0 \), \(\epsilon \), \(k_B \), and \(T \) are the electrical potential, the valence, the electron charge, the bulk ion concentration, the electric permittivity of the electrolyte, the Boltzmann constant, and the absolute temperature, respectively. The boundary conditions are:

\[
\psi(r = R_2) = \zeta
\]

(2a)

\[
\psi(r = R_1) = \zeta'
\]

(2b)

Introducing the following dimensionless variables:

\[
R = \frac{r}{R_1}, \quad \Psi = \frac{Ne}{k_B T} \psi
\]

(3)

and under the Debye-Huckel approximation \(\left| Ne \zeta \right| < k_B T \), we write Equation (1) in dimensionless form as follows:

\[
d^2\Psi + \frac{1}{R} \frac{d\Psi}{dR} = \chi^2 \Psi
\]

(4)

in which, \(\chi = \kappa R_1 \) is the electrokinetic radius (the length scale ratio); \(\kappa \) is the Debye-Huckel parameter defined as:

\[
\kappa = \left(\frac{2Ne_0^2 n_0}{\epsilon k_B T} \right)^{1/2}
\]

(5)

Figure 1. cross-section of the two-fluid microchannel
The boundary conditions (2) in dimensionless form are:
\[\Psi(R = 1) = Z \]
(6a)
\[\Psi(R = R_0) = Z_{z_0} \]
(6b)
It is noted that \(0 < R_0 < 1 \). Solution of (4) subjected to (6) is:
\[\Psi(R) = \frac{K_e}{2\mu_e} \left[Z_2 I_2(x) - Z_1 I_1(x) \right] - \frac{K_e}{2\mu_e} \left[Z_0 I_2(x) - Z_0 I_1(x) \right] \]
(7)
It should be noted that the electric potential for \(0 \leq R \leq R_0 \) is zero; while it is specified by Equation (7) for \(R_0 \leq R \leq 1 \).

2.2 Veloctiy Field

It is assumed that the two immiscible liquids are Newtonian; so the fully-developed EOF for the conducting liquid is described by the following simplified momentum equation [34, 35]:
\[\mu_e \left(\frac{\partial V_z}{\partial r} + \frac{1}{r} \frac{\partial V_{z1}}{\partial r} \right) = -2N_{e} \nu \sinh \left(\frac{9 \nu}{k_0 T} \right) E_z \]
(8)
where, \(V_z \) is the only non-zero velocity component of liquid 1 along the microchannel, \(\mu_1 \) is the viscosity of liquid 1, and \(E_z \) is the electric field strength. For the non-conducting liquid, the momentum equation gives:
\[\mu_2 \left(\frac{\partial V_{z2}}{\partial r} + \frac{1}{r} \frac{\partial V_{z1}}{\partial r} \right) = \frac{dp}{dz} \]
(9)
At the interface \((r = r_{z_0}) \), matching conditions must be satisfied. They are the continuities of velocity and shear stress which are represented as:
\[\begin{align*}
V_z &= V_{z1}, \\
\frac{\partial V_z}{\partial r} &= \frac{\partial V_{z1}}{\partial r} + E_z \rho_0 \end{align*} \]
(10)
in which, the interface charge density, \(\rho_0 \), is calculated from:
\[\rho_0 = -\frac{\partial V_z}{\partial r} (r = r_{z_0}) \text{ in dimensionless form } \rho_0 = -\frac{\partial \Psi}{\partial r}(r = R_0) \]
(11)
The latter can be determined by differentiating Equation (7) evaluated at \(R = R_0 \):
\[\rho_n = \frac{1}{2\mu_e} \frac{1}{2\mu_e} \left[K_e I_2(x) - K_e I_1(x) \right] + K_e \left[K_e I_2(x) - K_e I_1(x) \right] \]
(12)
To non-dimensionalize Equations (8)-(10), we would introduce Equation (3) together with the following reference quantities:
\[\begin{align*}
V_1 &= \frac{V_{z1}}{U_{m1}}, \\
V_2 &= \frac{V_{z2}}{U_{m2}}, \\
E &= \frac{E \mu_1}{\mu_2}, \\
\Gamma &= \frac{U_{m2}}{U_{m1}}
\end{align*} \]
(13)
where, \(L \) is the distance between the two electrodes, \(\Gamma \) is the body force ratio, \(U_{m1} \) and \(U_{m2} \) are the pressure-driven and Helmholtz-Smoluchowski reference velocities, respectively, expressed by:
\[\begin{align*}
U_{m1} &= \frac{9 \nu}{4\mu_1} \left(\frac{dp}{dz} \right) \frac{1}{\nu} \frac{1}{k_0 T} E \frac{1}{\nu} \\
U_{m2} &= \frac{\epsilon k_0 T E_{r}}{\nu} \frac{1}{k_0 T} E \frac{1}{\nu}
\end{align*} \]
(14)
Then, Equations (8)-(10) become:
\[\begin{align*}
\frac{dV_1}{dr} + \frac{1}{R} \frac{dV_{z1}}{dr} &= -2N_{e} \nu \sinh \left(\frac{9 \nu}{k_0 T} \right) E_z \frac{1}{R} \\
\frac{dV_2}{dr} + \frac{1}{R} \frac{dV_{z2}}{dr} &= \frac{dp}{dz} \frac{1}{R} + 4\Gamma \frac{1}{R} \\
V_1 (R = 1) &= 0, \quad \frac{dV_1}{dr} (R = 0) = 0
\end{align*} \]
(15)-(18)
Equations (15) and (16) are now solved with respect to boundary conditions (17) and (18).
\[V_1 (R) + Z \frac{dV_0}{dr} (R) \frac{1}{z} \frac{dV_0}{dr} (R) = Z - Z_{z_0} \]
(19)
One the flow field is determined, the Poiseuille number \((P_0) \), the non-dimensional volumetric flow rate \((Q) \), and the liquid-2 flow rate ratio \((q) \) can be obtained by the following formula:
\[P_0 = f. Re = 2\tau \frac{1}{z} \frac{dV_0}{dr} (R = R_0) \]
(21)
\[Q = Q_1 + Q_2 = \int_R^R \frac{1}{z} \frac{dV_0}{dr} (R) + \int_R^R \frac{1}{z} \frac{dV_1}{dr} (R) \]
(22)
\[q = \frac{Q_2}{Q_1} \]
(23)
in which, \(f = 2\pi \left(\rho U_{m1} \right), \quad Re = \rho U_{m1} \frac{R_0^3}{\mu_1} \) and \(\tau = \int_R^R \left(\frac{\mu U_{m1}}{3\pi} \right) = -\frac{dV_0}{dr} R \). The above quantities are presented below:
\[P_0 = 2\mu_1 R_0^3 \]
(24)
\[Q = \frac{Z}{2} + \frac{R_0^3}{2} \left(\Gamma \mu_1 + Z_{z_0} \right) + \frac{R_0^4}{4} \Gamma (1 - 2\mu_1) \]
(25)
\[Nume. \]
3. Results and Discussion

The effects of non-dimensional governing parameters on the hydrodynamic features of two-fluid electroosmotically and pressure-driven flow are examined in a circular microchannel. A non-conducting liquid (low EO fluid) holds the central portion of the channel, and a conducting liquid (high EO fluid) holds the area close to the wall. The normalized zeta potentials (at the wall and at the interface) are selected within the bounds imposed by the Debye-Hückel linearization. The characteristic scale of the microchannel to Debye length (the electrokinetic radius) is considered in the range of $\chi = 100 - 1000$ to investigate the essential features of EOF in a $100\mu m$ microchannel.

Figure 2a shows the non-dimensional potential distribution in the microchannel cross-sectional area for two different values of χ. Two electric double layers, close to the wall and near the liquid-liquid interface, are formed in the high EO mobility liquid due to the existence of wall and interfacial zeta potentials, respectively. The value of χ determines the EDL thickness; a larger value of χ (a larger bulk-ionic concentration and/or a larger channel size) corresponds to a thinner EDL. Figures 2a and 2b may be comparable with Figures 3b and 5a, respectively, in [28]; and show similar trends. The flow velocity of the conducting fluid (Figure 2c) was favorably compared with Figure 1b in [25] achieved using the analytic approach employed for a single conducting fluid flow thru a circular microchannel.

The two-liquid flow is driven by the pressure-gradient body force of the non-conducting liquid as well as the electric body/surface force of conducting liquid. It is noted that the electric body force results from the interaction of the external electric field with the volumetric local net charges in the high EO mobility liquid, while, the electric surface force is due to the effect of the external electric field on the interface free charges.

The combined effects of driving forces on dimensionless velocity profiles of the two liquids are illustrated in Figure 3.

As shown in Figure 3a, higher electrokinetic radius corresponds to higher velocity gradients at the wall and at the interface; also, maximum velocity within the EDL increases. Figure 3b shows that a decrease in Z_o causes the velocity of liquid 2 to increase, since the surface charges at the interface generate a force acting in the opposite direction to the EOF body force in the EDL.
region at the vicinity of the interface. When zeta potential at the wall is decreased (Figure 3c), the flow velocity is obviously decreases. When \(\mu_{21} \) is high, the flow resistance of the non-conducting liquid is higher than that of the conducting liquid, hence maximum velocity of liquid 1 is enhanced and so its velocity gradient (Figure 3d). In the case of small viscosity ratio, the non-conducting liquid is relatively easy to be dragged by the conducting liquid, and therefore the velocity gradient of liquid 1 reduces. Figure 3e demonstrates that larger \(\Gamma \) results in higher values of velocity, as well as a larger curvature of liquid-2 profile and a steeper incline of liquid-1 profile. Effect of \(\Gamma = 0 \), as illustrated in Figure 3f, is to produce plug-like velocity profiles for both liquids (independent of \(\mu_{21} \) selection).

Variations of the Poiseuille number versus \(\chi \) and \(Z \) are illustrated in Figure 4. It can be seen that increasing \(\chi \) has the same effect as \(Z \) which is increasing the Poiseuille number. By increasing \(\chi \), the Debye length is reduced, resulting in a higher velocity gradient inside the EDL and consequently a more Poiseuille number. The Poiseuille number value grows by increasing \(Z \) too, since higher electroosmotic force and therefore larger velocity gradient within the EDL will be produced.

Variables \(R_0 \), \(\mu_{21} \) and \(\Gamma \) have also increasing effects on the Poiseuille number (Figure 5). According to Equation (24), \(Po \) has a linear relationship with \(\mu_{21} \) and \(\Gamma \) and almost a quadratic relationship with \(R_0 \). All these variables cause the velocity gradient inside the Debye length to increase, hence \(Po \) increases.

Figure 6 depicts dimensionless volumetric flow rate as a function of \(\chi \), \(Z \), \(Z_0 \), \(R_0 \), \(\mu_{21} \) and \(\Gamma \). As can be seen in Figure 6a, for each individual set of data, the two-fluid flow rate approaches a specific value as \(\chi \rightarrow \infty \); for instance, \(Q \approx 0.2788 \) for set of given parameters \(Z = 0.5 \), \(Z_0 = 0.25 \), \(R_0 = 0.8 \), \(\mu_{21} = 1 \), and \(\Gamma = 0.5 \).

The flow rate has an ascending behavior with the wall zeta potential (Figure 6b), since higher electroosmotic force is produced by increasing \(Z \); on the contrary, an increase of \(Z_0 \) causes a decrease in \(Q \) due to generating an opposite force (Figure 6c). An increase of \(R_0 \) may increase or decrease the flow rate, depending on \(\Gamma \).
Interestingly, in this case, there are two values of R_0 which produce the same flow rate (Figure 6d). Figures 6e and 6f show that increasing μ_2, and Γ cause the flow rate to increase. Higher μ_2 means relatively lower viscosity and so higher velocity of liquid 1; higher Γ means relatively higher velocity of liquid 2.

Effects of parameters involved in liquid-2 flow rate ratio are illustrated in Figure 7. The non-conducting liquid is slightly affected by χ and Z. Figure 7c shows that Z_0 has descending influence on q, because the interface free charges induce a resistance to the flow and cause a smaller flow rate of the non-conducting liquid. For some special value of Z_0, q will be zero; and beyond that particular Z_0, a reversing flow will be observed. As shown in Figure 7d, the proportion of non-conducting liquid is obviously increased with increasing R_0. When μ_2 increases, the relative importance of non-conducting liquid viscosity increases (or conducting liquid viscosity decreases); as liquids 1 and 2 are driven by electroosmosis and pressure-gradient, respectively, the combined effect is to enhance the liquid-2 flow rate slightly (Figure 7e). Liquid 2 is directly influenced by Γ, and its flow rate increases with increasing the body force ratio.

The volumetric flow rate may be negative for sufficiently small values of Z or sufficiently large values of Z_0 (Figure 8).

At some special values of Z and Z_0 where $Q = 0$, the q curves demonstrate singularities due to diminishing the denominator of Equation (23).

4. CONCLUSIONS

Analytic solutions of linear Poisson-Boltzmann and Navier-Stokes equations are obtained in a circular microchannel, considering the electroosmosis-driven force and the pressure-driven force as body forces in a conducting and non-conducting incompressible fluids, respectively. The flow behavior depends on the coupling effect between the two liquids. The external electric intensity interacts with the free charges at the liquid-liquid interface to generate a surface force. Upon the application of the electric field, the flow is activated in regions close to the channel wall and the interface. The results of the current research are summarized below:

I. Larger values of electrokinetic radius correspond to smaller values of Debye length and higher velocity gradients near the wall; this leads to larger electroosmotic forces.

II. The interaction between the interface free charges and the external electric field produces a force acting in the opposite direction to the electroosmotic body force in the EDL.

III. A steeper velocity gradient is observed in the conducting liquid for higher viscosity ratio.

IV. An increase in the body force ratio results in increasing the flow velocity, and also curving the non-conducting fluid velocity profile and inclining the conducting fluid velocity profile.

V. When body force ratio is zero, both liquids attain plug-like velocity profiles.
VI. Poiseuille number is an increasing function of electrokinetic radius, wall zeta potential, interface radius, viscosity ratio, and body force ratio.

VII. Dimensionless volumetric flow rate approaches a specific value as $\chi \to \infty$ (for the parameters involved). It is enhanced with increasing the wall zeta potential, while an opposite trend is observed with increasing the interface zeta potential. The flow rate may have ascending or descending trend with the interface radius, depending on the body force ratio. Viscosity ratio and body force ratio both are means of flow rate enhancement. For sufficiently small values of the wall zeta potential or sufficiently large values of the interface zeta potential, the volumetric flow rate may become negative (an entirely back flow). A zero flow rate is clearly attainable.

VIII. Beyond some particular value of the interface zeta potential, a back flow may be observed.

IX. The proportion of non-conducting liquid flow rate is enhanced by increasing the viscosity ratio as well as the body force ratio.

5. REFERENCES

Two-fluid Electrokinetic Flow in a Circular Microchannel

A Jabari Moghadam

Department of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran

Paper Info

Keywords:
- Electroosmotic
- Pressure-gradient
- Two-fluid stratified Flow
- Exact Solution

