Investigation of the Effects of Non-linear and Non-homogeneous Non-Fourier Heat Conduction Equations on Temperature Distribution in a Semi-infinite Body

Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
Department of Mechanical Engineering, Babol University of Technology, Babol, Iran

Abstract

In this paper, the non-Fourier heat conduction in a semi-infinite body was examined. The heat wave non-Fourier heat conduction model was used for thermal analysis. Thermal conductivity was assumed temperature-dependent which resulted in a non-linear equation. The heat source was also considered temperature-dependent which resulted in a non-homogeneous equation. The Mac-Cormack predictor-corrector numerical method was employed to solve the equations. It was concluded that, the non-linear analysis of the non-Fourier heat transfer problems is of great importance. Also, the case which assumed a temperature-dependent heat source had a considerable difference with the case in which a constant heat source was assumed.

1. Introduction

Conduction is a heat transfer mechanism in which, thermal energy transfers from a higher temperature region to a region with lower temperature. The constitutive equation to describe this mechanism was first proposed in 1822 by the French physicist, Joseph Fourier, in a thesis entitled “Analytical Theory of Heat” [1]. The Fourier’s classical parabolic heat equation was being used in all analyses until 1950. However, it was well-established that assuming an infinite speed for thermal energy in a material is non-physical. Although this assumption is valid in most common applications, in some cases, such as heat transfer at very low temperatures [2], heat transfer in very small scales [3],

* Corresponding Author’s Email: Moj.noroozi@gmail.com (M. J. Noroozi)
and very high heat transfer rate in a short period of time [4], the Fourier’s law cannot correctly predict the thermal behavior of the material.

In the mid-twentieth century, some scientists such as Morse and Feshbach [5], Cattaneo [6], and Vernotte [7], in different studies, achieved a new form of heat conduction equation to account for the effect of time lag between the heat flux vector and the resulting temperature gradient vector. This time lag is called the relaxation time, \(\tau \). Thus, a classical heat wave model was established which is known as the Cattaneo-Vernotte heat conduction model. This modification in the Fourier’s model transformed the energy conservation equation, which assumed a parabolic heat conduction equation, into a hyperbolic wave equation. The hyperbolic heat conduction model shows the effects of heat transfer phenomena at small time scales on conventional spatial scales. Joseph and Preziosi [8] and Ö兹izik and Tzou [9] reviewed the thermal relaxation phenomenon in the thermal wave propagation theory.

In most studies that have been conducted on non-Fourier heat conduction, due to constant thermal properties the resulting equations were linearized, and the nonlinear study of such problems is rare in the literature but as we know, the behavior of materials is inherently nonlinear in nature, and the study of nonlinear problems mentioned in some cases is very important. On the other hand, in most studies, the heat source has been assumed constant, while in some cases, such as nuclear or chemical reactions, heat generation in the system is temperature-dependent.

In this study, the non-Fourier heat conduction problem in a semi-infinite body was studied. The Cattaneo-Vernotte thermal wave model was used. The thermal conductivity coefficient was assumed temperature-dependent which resulted in a non-linear equation. The heat source was also considered temperature-dependent. The numerical Mac-Cormack predictor-corrector method was used to solve the equations. The investigation of the effects of a variable thermal conductivity and a variable heat source in a non-Fourier heat conduction problem is the novelty and originality of this study.

2. MATHEMATICAL MODELING

Consider a 1-D semi-infinite body. Energy equation assuming the presence of a heat source is as follows:

\[
\rho c \frac{\partial T(x,t)}{\partial t} + \frac{\partial q(x,t)}{\partial x} - g = 0
\]

where \(\rho \) is the density of the body, \(c \) is specific heat of the body, \(T(x,t) \) is temperature function and \(q(x,t) \) is the function of heat flux, \(g \) is the heat source, and \(x \) and \(t \) are spatial and temporal variables, respectively. The conduction heat flux constitutive equation governing the problem based on the heat wave model [6, 7] can be written as follows:

\[
\tau \frac{\partial q(x,t)}{\partial t} + q(x,t) + k \frac{\partial T(x,t)}{\partial x} = 0
\]

where \(\tau \) is the thermal relaxation time and \(k \) is thermal conductivity. A variation in thermal conductivity is considered as a linear function of temperature, as follows:

\[
k = k_0 [1 + \gamma (T - T_0)]
\]

The heat source can be also modeled as a linear function of temperature as the following equation:

\[
g = g_0 [1 + \beta (T - T_0)]
\]

The following dimensionless parameters are introduced:

\[
FO = \frac{a \alpha}{2L}, \quad \tau = \frac{x}{2L}, \quad Ve^2 = \frac{a \alpha}{L^2}, \quad \eta = \frac{2g \alpha L}{k_0}, \quad \alpha = \frac{\eta \beta}{2}, \quad \frac{T(x,t) - T_0}{T_0}, \quad \frac{q(x,t)}{T_0} = \frac{\tilde{T}(\xi, FO) - \tilde{T}}{\tilde{T}}
\]

Thus the dimensionless form of Equations (1) and (2) are as follows:

\[
Ve^2 \frac{\partial \tilde{T}(\xi, FO)}{\partial FO} + \frac{1}{Ve^2} \frac{\partial \tilde{T}(\xi, FO)}{\partial \xi} - \eta [1 + \beta \tilde{T}(\xi, FO)] = 0
\]

\[
Ve^2 \frac{\partial \tilde{T}(\xi, FO)}{\partial FO} + 2q(\xi, FO) + Ve^2 [1 + \beta \tilde{T}(\xi, FO)] \frac{\partial \tilde{T}(\xi, FO)}{\partial \xi} = 0
\]

The initial and boundary conditions in the dimensionless form are also as follows:

\[
\tilde{T}(\xi, 0) = 0, \quad \tilde{q}(\xi, 0) = 0, \quad \tilde{q}(\infty, FO) = 0,
\]

\[
\tilde{T}(0, FO) = \tilde{T}_0 u(FO).
\]
3. NUMERICAL SCHEME

The Mac-Cormack predictor-corrector numerical method is used to solve the equations. First, Equations (6) and (7) should be written in vector form, as follows:

\[
\frac{\partial E}{\partial \tau FO} + \mathbf{F} = 0
\]

where,

\[
E = \left[\tilde{T}(\tilde{x}, FO) \right]
\]

\[
\mathbf{F} = \left[\frac{1}{Ve} \tilde{q}(\tilde{x}, FO) \right]
\]

\[
H = \left[-\eta \left(1 + \beta \tilde{T}(\tilde{x}, FO) \right) \right]
\]

Then, by imposing Mac-Cormack scheme to above equations, finite difference formulations are resulted [25]:

Predictor:

\[
E^{i+1} = E^i - \frac{\Delta FO}{\Delta \tilde{x}} \left[F^{i+1} - F^n \right] - \Delta FOH^n
\]

Corrector:

\[
E^{n+1} = \frac{1}{2} \left(E^i + E^{i+1} \right) - \frac{\Delta FO}{\Delta \tilde{x}} \left(F^{i+1} - F^{i-1} \right) - \Delta FOH^{i+1}
\]

In above equations, subscript \(i \) indicates the grid point in spatial domain, superscript \(n \) denotes the time level in time domain, tilde symbol indicates the predicted value in \(n+1 \) time level, \(\Delta \tilde{x} \) and \(\Delta FO \) are spatial and time steps, respectively. The forward finite differencing is used for predictor formulation and the backward differencing is used for corrector formulation.

4. RESULTS AND DISCUSSION

To evaluate the accuracy of the results obtained from the numerical method, the results were compared to Lewandowska and Malinowski [26], which is a linear analytical study (Figure 1). As can be seen in Figure 1, the employed numerical method was highly accurate. The acceptable agreement between the two graphs also confirms the accuracy of the numerical method. Quantitatively, there is a 0.85% average error for \(\alpha=0.05 \) and 0.53% average error for \(\alpha=0.005 \) between present study and analytical solution of Lewandowska and Malinowski [26]. The variations of various parameters and the resulting effects are discussed in the next sections.

4.1. Variations in the Vernotte Number

Figure 2 shows the effect of variations in the Vernotte number on the temperature profile. In the early parts of the body, at a certain point, the temperature increased with increasing the Vernotte number. An increased Vernotte number increased the difference between the diagrams. By moving forward in the body, an increasing trend was observed in all diagrams, and the diagrams reached to a maximum. This increase is due to the temperature-dependency of the heat source. In fact, an increased temperature increased the energy amount of the heat source, which in turn, increased the temperature. This mutual feedback continued. However, energy dissipaters, such as heat resistance of the material prevent this trend from reaching an infinite temperature, and finally, at one point, i.e., the maximum point, the rising trend of temperature stops, and the temperature would then decrease. The declining trend of graphs became steeper and caused the three diagrams with lower Vernotte number coincide in one point (around \(\tilde{x}=4.2 \)). The declining trends continued after this point, and finally, all the curves converged to \(\tilde{T}=0.35 \), which shows that the balance between temperature and heat source had been established.
Another noteworthy issue in the diagrams is the oscillatory behavior of the diagrams by increasing the Vernotte number. This behavior is especially evident at the endpoint of the diagram corresponding to \(Ve=2 \) as well as the diagram corresponding to \(Ve=10 \). In fact, by increasing the Vernotte number, diagrams had a steeper slope in rises and declines and became more damped. The oscillatory behavior is a characteristic of the non-Fourier heat transfer, and higher oscillatory behavior indicates the greater deviation of the material thermal behavior from the Fourier state. Increase in Vernotte number increased the maximum of the diagram which also occurred earlier. These behaviors can be justified considering the nature of the Vernotte number (\(Ve = \sqrt{k_0 \tau_0 / L} \)). In fact, the materials with higher relaxation times, and consequently larger Vernotte numbers, show more evident non-Fourier behavior. This can be found in reference [27].

4. 2. Effect of Thermal Conductivity Variations with Temperature Effect of thermal conductivity variations with temperature was also of interest. Figure 3 shows the effect of thermal conductivity coefficient (\(\gamma \)) variations with temperature on the temperature profile. As can be seen in Figure 3, an increased \(\gamma \) decreased the temperature at a given point. An increased \(\gamma \) caused the maximum temperature occur at an earlier point. A smaller \(\gamma \) resulted in a more uniform and slower temperature variation and caused the temperature decay to the final temperature at a wider range. Figure 3 represents the importance of considering the thermal conductivity as a variable and indicates how much this parameter is affected by the temperature variations.

4. 3. Effect of Variation in Heat Source Coefficient with Temperature Figure 4 shows the effect of variation in coefficient of heat source (\(\beta \)) with temperature on the temperature profile. In negative values of \(\beta \), variation in this parameter did not significantly affect the temperature, and in fact, the effect of negative slope of variation in heat source with temperature was negligible on the temperature profile. However, in the positive values of \(\beta \), variation in this parameter significantly affected the temperature and reduced the temperature at a given point. The reduction was particularly significant at endpoints, and constant endpoint temperatures were different for different values of \(\beta \). The maximum temperature occurred when the heat source was assumed constant and independent of temperature (\(\beta = 0 \)). In fact, this figure shows that a constant heat source is acceptable only if the assumption is absolutely true and not an approximation to merely simplify the problem, because otherwise, the results would have significant error.

4. 4. Effect of Variations in the Heat Source Magnitude Finally, it is noteworthy to look at the effect of variations in the dimensionless reference heat source magnitude (\(\eta \)) on the temperature profile. Figure 5 shows these variations. Figure 5 shows that, as expected, the temperature increased with increase in \(\eta \). In fact, similar to the previous figure, the variations in the negative values of these parameters had much less effect on the temperature profiles compared to the positive values. The maximum temperature occurred at positive values of \(\eta \) and moved forward with increase in...
Variations in η changed the final value of the constant temperature.

5. CONCLUSION

Non-Fourier heat transfer problem in a semi-infinite body was examined. The Cattaneo-Vernotte thermal wave model was employed. Thermal conductivity was assumed temperature-dependent which resulted in a non-linear equation. The heat source was also assumed temperature-dependent. The Mac-Cormack predictor-corrector numerical method was utilized to solve the equations. In summary, the following results were obtained:
1. An increased Vernotte number resulted in more significant non-Fourier effects and a more oscillatory behavior in the temperature profile.
2. The importance of considering the thermal conductivity temperature-dependence was proved. It was shown that increase in the thermal conductivity coefficient (γ) decreases the temperature at a given point.
3. It was concluded that the changes in heat source coefficient (β) significantly affects the temperature, and their increased values reduce the temperature at a given point.
4. The assumption of a constant thermal conductivity and constant heat source may result in a large error in the results. This issue should be carefully addressed.

6. REFERENCES

Investigation of the Effects of Non-linear and Non-homogeneous Non-Fourier Heat Conduction Equations on Temperature Distribution in a Semi-infinite Body

S. Saedodina, M. J. Noroozia, D. D. Ganjib

aFaculty of Mechanical Engineering, Semnan University, Semnan, Iran
bDepartment of Mechanical Engineering, Babol University of Technology, Babol, Iran

\textbf{PAPER INFO}

\textbf{Paper history:}
Received 03 July 2015
Received in revised form 31 August 2015
Accepted 24 December 2015

\textbf{Keywords:}
Heat Conduction
Mac-Cormack Numerical Method
Non-Fourier
Non-Homogeneous Equation
Non-Linear Equation

In this article, the problem of non-Fourier heat conduction in a semi-infinite body is investigated. The hyperbolic heat conduction equation is used to analyze the heat problem. The heat conductivity is assumed to be a function of temperature, leading to a nonlinear equation. Furthermore, a heat source is considered to be a function of temperature, which results in a non-homogeneous equation. A predictor-corrector Mac-Cormack numerical method is used to solve the equations. The results show that the non-linear analysis of non-Fourier heat conduction equations is significant, and considering the heat source as a function of temperature significantly affects the results compared to assuming a constant heat source.