Fe/TiO₂ Catalyst for Photodegradation of Phenol in Water

F. Akhlaghian*, S. Sohrabi
Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran

ABSTRACT

In this work, Fe/ TiO₂ nanostructured catalyst was prepared using the sol-gel method developed by Yoldas and tested for degradation of phenol in water under UV radiation. The synthesized catalyst was characterized by XRF; XRD; specific surface area, and porosimetry; and SEM methods. SEM results confirmed the nano dispersion of iron oxides on titania support. Effects of Fe load of the catalyst, dosage of the catalyst, pH, H₂O₂ amount, and time were investigated. Results of phenol photodegradation over Fe/TiO₂ showed that the reaction followed an apparent first order kinetics at low phenol concentration, and apparent rate constant was 0.0017 min⁻¹. Also, there was an optimum for Fe load of the catalyst. The better photocatalytic activity of Fe/TiO₂ coated on leca particles was observed in comparison to Fe/TiO₂ powder.

doi: 10.5829/idosi.ije.2015.28.04a.02

1. INTRODUCTION

Over many years, the world health organization (WHO) has reported insufficient drinking water; on the other hand, developing industries discharge huge volume of wastewater into water sources and make them increasingly contaminated. Chemical industries which produce dyes, pesticides, and drugs are specifically responsible for this contamination as they discharge phenol and its derivatives, containing high toxic and carcinogenic compounds into water. Phenol is detrimental to human health, so the environmental protection agency (EPA) has limited the phenol concentration to less than 1 ppb [1-6]. Moreover, for sustainability of water resources, wastewater treatment issues have gained momentum during the recent decades [7, 8].

The most widely used methods for removal of phenolic compounds from water are adsorption and chemical oxidation. Adsorption refers to the transfer of pollutant from aqueous to solid phase; however, it is not a permanent method since the adsorbent needs to be regenerated. Photocatalytic oxidation has recently been proposed as an effective and economical method of converting pollutants into carbon dioxide and water [2, 9]. Phenol photodegradation can be explained by the advanced oxidation process (AOP) promoted by heterogeneous photocatalytic conversion of contaminant organic material to nontoxic materials i.e. CO₂ and H₂O. First, as a result of UV radiation, photons with energies higher than the band gap of the semiconductor materials like TiO₂ excite the electron valence band, then the excited electron migrates to the conduction band and a hole (h⁺) is produced. The generated electron (e⁻) and the hole (h⁺) are strong oxidizing and reducing agents, respectively. Holes react with H₂O and OH⁻ to produce ·OH, O₂⁻, and HO₂⁻ radicals. The generated radicals oxidize the contaminant organic materials into CO₂ and H₂O [10, 11]. When the reduction and oxidation reactions do not proceed simultaneously, an electron accumulation occurs in the conduction band which causes the rate of the recombination of e⁻ and h⁺ to increase. The recombination causes energy dissipation that should be prevented to ensure efficient photocatalysis [11].

Titanium dioxide has the potential to be applied in the decomposition of many organic pollutants due to its optical and electrical properties, low cost, chemical stability, and nontoxicity [12]. TiO₂ with a modified
Recently, considerable efforts have been made to develop TiO₂ catalyst to improve their catalytic behaviors. Hung et al. [13] synthesized TiO₂ and Fe-TiO₂ by the sol-gel method and tested their photocatalytic activity for dichloromethane degradation in the gaseous phase. The effects of two types of oxidant agents in water, oxygen, and hydrogen peroxides with nanosized iron-doped anatase TiO₂ catalysts were investigated by Adan et al. [14]. Lorret et al. [15] evaluated the photocatalyst activity depends on the tungsten content and investigated its structure, magnetic properties, and its photocatalytic activity for degradation of nitrobenzene in water. Oros-Ruiz et al. [19] investigated the effect of Au, Ag, Cu, and Ni nano particles deposited on TiO₂ and applied them for photodegradation of trimethoprim.

Various methods are available for preparation of the photocatalysts. Among them sol-gel methods are found appealing. They have benefits such as synthesis of nano-sized crystallized powder at low temperature, preparation of composite materials, possibility of stoichiometry controlling of process, and coating surfaces with different types and shapes [20, 21].

In this work, nanostructured Fe/TiO₂ photocatalyst was synthesized by the sol-gel method developed by Yoldas and tried to use the easy coating property of this method [21]. The photocatalyst was characterized and its photo activity was investigated. The photo catalyst was also coated on leca particles. The photocatalytic activity of coated and powder form catalysts was compared.

2. MATERIALS AND METHODS

2. 1. Materials
Titanium isopropoxide and Fe(NO₃)₃·9H₂O were used as precursors for titania and Fe, respectively. Ethanol, nitric acid, H₂O₂, and phenol were also used. All the materials were of analytical grade, used without further purifications, and purchased from Merck Company. Double-distilled water was used throughout the experiments.

2. 2. Synthesis of Fe/TiO₂
Following Yoldas method, titanium isopropoxide was added to the double-distilled water. The molar ratio of titanium isopropoxide to water was 1:100. The mixture was stirred at a constant rate at 85°C for 45 min. The nitric acid was added. The molar ratio of titanium isopropoxide to nitric acid was 1:0.07. Fe(NO₃)₃·9H₂O was dissolved in ethanol and a solution of Fe 2 wt.% was obtained. Fe was added to the mixture through this solution. The mixture was stirred at a constant rate at 85°C for 24 h. The obtained gel was dried at 100°C in an oven for 12 h. Finally, the dried gel was calcined in a muffle furnace at 600°C for 2 h. The Fe/TiO₂ powder was crushed and sieved into 60-90 μm particles. Leca particles sized 4-10 mm were used as the substrate for coating by the catalyst. The gel mixture stirred at 85°C for 24 h was used for coating. The leca particles were immersed in the gel mixture and coated by dip coating method. The coated leca particles were dried at 100°C for 12 h and calcined at 600°C for 2 h.

2. 3. Characterization
Iron content of the catalyst was measured by Spectro X-ray fluorescence (XRF) spectrometer. The degree of crystalline order of the sample was assessed via X-ray diffraction (XRD) using X’pert MPD diffractometer with Co Kα radiation at 40 kV and 40 mA. The XRD patterns were collected from 5-80° in 2θ at a scan rate of 0.2°/s. The specific surface area and porosity were obtained using Micrometrics ASAP 2010. Before measuring nitrogen adsorption, the catalyst was degassed at 300°C for 6 h. The structure and morphology of the catalyst was investigated by field emission scanning electron microscopy of FESEM of TESCAN Company. UV-Vis spectrometer Specord 210 was used for measuring phenol concentration in water.

2. 4. Photocatalysis Experiments
The setup, as shown in Figure 1, consisted of batch Pyrex reactor illuminated by a UV lamp with peak intensity of 254 nm, fixed 19.5 cm above the reactor center. The system was in a chamber shielded by aluminum foil during the reaction to prevent the outside light interference. First, 0.1 g of Fe/TiO₂ catalyst was added to 200 ml of phenol solution in water which was used as wastewater. Then, 12.5 ml of hydrogen peroxide (30 wt.%) was added to the solution. The mixture was transferred to the reactor and stirred at a constant rate under UV lamp (Light intensity was 242.35 or 757.28 W/m²) for 2 h. All the experiments were carried out at room temperature
(20°C). Then, the mixture was centrifuged, and the absorbance of the supernatant solution was measured at 270 nm using a Specord 210 UV spectrometer. The experiments were replicated with a blank. All the conditions in the blank were the same as those of the sample except the blank had no catalyst. The concentration of phenol in the solution was measured using Beer-Lambert law, and the photodegradation was calculated using the following equation [22]:

\[
\text{Degradation} \% = 100 \times \left(1 - \frac{A}{A_0}\right)
\]

where \(A_0\) and \(A\) are absorbance of the blank and the sample, respectively. Each experiment was repeated three times, and the average is reported. The standard deviations for all the experiments are less than 0.06.

3. RESULTS AND DISCUSSION

3.1. Optimum Fe Load

Since the photo activity of Fe/TiO\(_2\) is highly affected by Fe load, preliminary experiments were done to distinguish the catalyst with optimum Fe load. Fe/TiO\(_2\) photocatalysts were synthesized with different Fe loads and called A, B, C, D, and E. The catalysts were analyzed by an X-ray fluorescence (XRF), and their chemical analyses were determined. The catalysts A, B, C, D, and E were pure titania, \(0.2\%\ Fe_2O_3/TiO_2\), \(0.27\%\ Fe_2O_3/TiO_2\), \(0.41\%\ Fe_2O_3/TiO_2\), and \(0.5\%Fe_2O_3/TiO_2\), respectively. Figure 2 shows that catalyst C, \(0.27\%Fe_2O_3/TiO_2\) had the best phenol degradation yield. Thus, it was chosen as the best catalyst, and used for characterization and activity tests.

3.2. Mechanism

When Fe/TiO\(_2\) is illuminated by UV light, the electron of TiO\(_2\) valence band transfers to Fe\(^{3+}\) and causes a reduction from Fe\(^{3+}\) to Fe\(^{2+}\). The generated hole in the valence band can produce hydroxyl radicals, and subsequently \(\cdot OH\) radical oxidizes the organic material to CO\(_2\) and H\(_2\)O. The generated Fe\(^{2+}\) can produce superoxide radical (O\(_2^\cdot\)) [10, 11]. Fe\(^{3+}\) consumes photo electron and decreases the recombination reaction rate of h\(^+\) and e\(^-\), so the activity of the photocatalytic reaction is improved. When the Fe load exceeds the optimum amount, Fe may act as recombination center and this is unfavorable for photocatalysis reaction [11].

3.3. Characterization

3.3.1. XRD

XRD pattern of catalyst A (pure titania) and catalyst C (\(0.27\%Fe_2O_3/TiO_2\)) are shown in Figure 3. The XRD patterns of pure titania with peaks at 29.5090\(^\circ\), 44.2294\(^\circ\), and 56.4824\(^\circ\) were attributed to anatase (JCPDS File no. 21-1272). These results imply that both rutile and anatase phases existed in pure titania. In XRD pattern of Fe/TiO\(_2\), in addition to peaks belonging to rutile and anatase phases (JCPDS Files no. 21-1276), other peaks were also identified which corresponded to iron oxides Fe\(_2O_4\) (JCPDS File no. 19-0629), and Fe\(_2O_3\) (JCPDS File no. 39-1346). The anatase weight percent can be calculated by [23, 24]:

\[
X_A(\%) = \frac{100}{1+1.26(1/_{\beta_a})}
\]

where \(X_A\) denotes the weight fraction of anatase; \(I_a\) denotes the intensity of the strongest reflection; and the subscripts A and R denote the anatase and rutile phases, respectively. Crystallite size is estimated by Scherrer formula [23]:

\[
D = \frac{k\lambda}{\beta \cos \theta}
\]

where \(D\) is the crystallite size (nm), \(k\) is a correction factor taken as 0.89, \(\lambda\) is the wave length of X-radiation (Co k\(_{\alpha}\)=0.178897 nm), \(\beta\) is the full width at half maximum peak, and \(\theta\) is the diffraction angle. The average crystallite size must be estimated considering both anatase and rutile peaks according to the following relationship [23]:

\[
D_{ave} = \frac{D_{a1}I_a + D_{a2}I_a}{I_a + I_R}
\]

Figure 1. Schematic representation of the setup

Figure 2. The effect of initial concentration on the phenol photodegradation for the catalysts A, B, C, D, and E (intensity of UV radiation was 242.36 mW/cm\(^2\))
Dₐ and Dᵦ are crystallite sizes of anatase and rutile phases, respectively. The degree of crystallinity is given by [25]:

\[
C = 100 \times \frac{I_c}{I_c + I_{Am}}
\]

(5)

where C is the degree of crystallinity; I_c and I_{Am} are the intensities of X-ray scattered by crystalline and amorphous regions, respectively. Table 1 shows the percentages of rutile and anatase phases, the crystalline size, and the degree of crystallinity. As it is seen, more than 90% of titania crystals were in the rutile phase. Also, addition of Fe reduced the crystalline size and the degree of crystallinity [23, 24]. Crystallinity is reduced as the dopant is introduced into the lattice. It originates from the fact that the order of TiO₂ lattice is distributed by the dopant due to the different atom sizes of Fe³⁺ and Ti⁴⁺.

3. 3. 2. Porosimetry

Nitrogen adsorption/desorption isotherm of 0.27% Fe₂O₃/TiO₂ catalyst is shown in Figure 4(A). The isotherm shape showed that the Fe/TiO₂ catalyst was mesoporous and according to the IUPAC classification, nitrogen adsorption/desorption was type IV and its hysteresis was type H2. Catalysts with H2 type hysteresis have ink-bottle pores (small body and large mouth) [26]. Pore size distribution is shown in Figure 4(B), and is multimodal. The prevalence of the pores decreases as pore diameter increases. Table 2 shows specific surface area, average pore diameter, and pore volume of the catalyst, calculated using Barrett-Joyner-Halenda (BJH) desorption method.

3. 3. 3. SEM

The SEM images of the Fe/TiO₂ catalyst are given in Figure 5. Images a and b show that the particles did not have any particular shape and they were not uniform in size. The brilliant spots of image c were related to nano size iron oxide particles dispersed in titania support.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Anatase (wt. %)</th>
<th>Rutile (wt. %)</th>
<th>Crystallite size (nm)b</th>
<th>Degree of crystallinity (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂</td>
<td>9.03</td>
<td>90.97</td>
<td>57.03</td>
<td>81.21</td>
</tr>
<tr>
<td>Fe/TiO₂</td>
<td>5.41</td>
<td>94.59</td>
<td>50.93</td>
<td>73.32</td>
</tr>
</tbody>
</table>

Table 1. Textural characteristics of TiO₂ and Fe/TiO₂ catalyst

3. 4. Photocatalytic Activity

3. 4. 1. Initial Concentration

Figure 1 shows the effect of phenol initial concentration on phenol degradation for all the catalysts from A to E. In the phenol concentration range of 50-200 ppm, degradation increased with an increase in phenol concentration, but at concentration greater than 200 ppm, phenol degradation decreased with an increase in initial concentration of phenol due to the occupation of catalyst active sites by molecules and insufficient ·OH radicals for phenol photodegradation [22, 27, 28]. According to Figure 1, these trends are similar for all the catalysts from A to E.

3. 4. 2. Catalyst Dosage

Degradation of phenol with photocatalyst dosage is represented in Figure 6. First, phenol degradation was raised with increasing dosage of the photocatalyst due to an increase in the number of the photocatalyst active sites. When dosage
of the photocatalyst increased to greater than 0.5 g/L, phenol degradation decreased because of the increase in the opacity of the suspension and scattering of the light as it could not penetrate to the depth, and few sites of the catalyst were activated [22, 28].

![SEM images of the Fe/TiO$_2$](image)

Figure 5. SEM images of the Fe/TiO$_2$

![Effect of the photocatalyst dosage on the degradation of phenol (intensity of UV radiation was 757.38 mW/cm2, and phenol initial concentration was 200 ppm)](image)

Figure 6. Effect of the photocatalyst dosage on the degradation of phenol (intensity of UV radiation was 757.38 mW/cm2, and phenol initial concentration was 200 ppm)

![Effect of H$_2$O$_2$ (30 wt.%) on the phenol photodegradation (intensity of UV radiation was 757.38 mW/cm2, and phenol initial concentration was 200 ppm)](image)

Figure 7. Effect of H$_2$O$_2$ (30 wt.%) on the phenol photodegradation (intensity of UV radiation was 757.38 mW/cm2, and phenol initial concentration was 200 ppm)

3. 4. 3. H$_2$O$_2$

Hydroxyl radicals were produced upon photolysis of H$_2$O$_2$ in the presence of UV radiation. Hydroxyl radical is an electron acceptor which avoids electron-hole recombination and reacts with phenol [5, 10]. At low H$_2$O$_2$ concentration, H$_2$O$_2$ cannot produce enough ·OH radicals, so phenol photocatalytic degradation is small [5, 10]. At high hydrogen peroxide concentration, ·OH radicals react with H$_2$O$_2$ in excess. This reaction consumes hydroxyl radicals and competes with phenol oxidation. A decrease in hydroxyl radical concentration also causes phenol photocatalytic degradation to decrease. Figure 7 shows the phenol degradation with the amount of H$_2$O$_2$ (30 wt.%). As shown, the optimum amount for H$_2$O$_2$ (30 wt.%) was 12.5 ml.

3. 4. 4. pH

The maximum photocatalytic degradation of phenol was observed at pH=9 as shown in Figure 8. In the acidic pH, there were competitions between the phenol and anions of the solution for reaction with ·OH and also the catalyst active sites which reduced phenol degradation [29]. At pH=9, high concentration of OH$^-$ resulted in deactivation of ·OH. The reaction between OH$^-$ and ·OH produced H$_2$O$_2$ and
·OH₂. The reaction between ·OH₂ with phenol was also very low. At high pH, more radical-radical reactions occurred and reduced the phenol degradation [29]. The optimum pH for photocatalytic degradation which was determined experimentally was 9.

3. 4. 5. Kinetic Model Many kinetic models for the photocatalytic decomposition of organic contaminants in water have been reported [5, 23]. Langmuir-Hinshelwood (L-W) is a model commonly applied for heterogeneous photocatalytic reactions:

$$r = -\frac{dc}{dt} = k \left(\frac{KC}{1+KC} \right)$$

where r is the rate of reaction (ppm/min), k is the photocatalysis rate constant (ppm/min), K is the adsorption rate constant (ppm⁻¹) and C is the contaminant concentration (ppm) [5, 23]. At low concentration ($KC \leq 1$), KC is negligible compared to 1, and the reaction rate follows an apparent first order kinetic model. Integration of Equation (2) under these assumptions give:

$$-\ln \left(\frac{C}{C_0} \right) = k_{app} t$$

where C_0 is the initial concentration of organic contaminant and k_{app} is the apparent constant.

Figure 8. Effect of pH on the photocatalytic degradation of phenol (intensity of UV radiation was 757.38 mW/cm², and phenol initial concentration was 200 ppm)

Figure 9. Phenol concentration with time (intensity of UV radiation was 757.38 mW/cm², and phenol initial concentration was 200 ppm)

Figure 10. Effect of coating on photocatalytic activity (intensity of UV radiation was 757.38 mW/cm², and phenol initial concentration was 200 ppm)

TABLE 3. Apparent rate constant for photocatalytic degradation of phenol

<table>
<thead>
<tr>
<th>Sample</th>
<th>Phenol degradation after 10 h</th>
<th>Apparent rate constant (min⁻¹)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe/TiO₂ catalyst</td>
<td>98.26</td>
<td>0.0017</td>
<td>0.9751</td>
</tr>
</tbody>
</table>

3. 4. 6. Fe/TiO₂/Leca Photocatalytic Activity

Figure 10 shows the result of Fe/TiO₂/Leca photocatalytic activity. The dose of photocatalyst powder and Fe/TiO₂ coated on leca particles were the same, equal to 0.5 g/L. The better performance of Fe/TiO₂/Leca is obvious. Coating leca particles by Fe/TiO₂ increased the available surface area for photocatalytic reaction, and therefore improved the photocatalytic activity.

4. CONCLUSION

Fe/TiO₂ catalyst was synthesized using sol-gel method developed by Yoldas and successfully applied for the photocatalytic degradation of phenol in water. The optimum load for Fe was determined and the analysis of the catalyst was determined by XRF: 0.27% Fe₂O₃/TiO₂. The catalyst was characterized by XRD, specific surface area and porosimetry, and SEM techniques. The result of XRD showed that both Fe₂O₃ and Fe₂O₄ iron oxides existed in the catalyst. SEM images showed the nano size iron oxides particles on titania support. It is worth mentioning that the kinetic model of the reaction was apparent first order. Effects of the operating conditions of photocatalysis reaction including initial concentration of phenol in the solution, catalyst dosage, amount of H₂O₂, time, and pH were investigated and optimized. Fe/TiO₂ catalyst was coated...
on leca particles. The photocatalysis activity of Fe/TiO\textsubscript{2}/Leca was better than Fe/TiO\textsubscript{2} powder due to its higher surface area. Finally, it was concluded that Fe/TiO\textsubscript{2} catalyst synthesized by the sol-gel technique based on Yoldas method is a promising catalyst for phenol degradation and photocatalysis process.

5. REFERENCES

Fe/TiO₂ Catalyst for Photodegradation of Phenol in Water

F. Akhlaghian, S. Sohrabi

Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran

PAPER INFO

Paper history:
Received 06 November 2014
Received in revised form 01 January 2015
Accepted 13 March 2015

Keywords:
Nanostructured
Photocatalysis
Titania
Phenol Degradation
Catalyst Coating

doi: 10.5829/idosi.ije.2015.28.04a.02