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Tensle stress-dtrain curve is of high importance in mechanics of materials particularly in numerical
simulations of material deformations. The curve is usually obtained by experiment, but is limited by
the necking phenomenon. Engineering stress-strain curve is converted to true stress-strain curve
through simple formulas. The conversion, however, is correct up the point of necking. From this point
on, the curve should be corrected taking account of stress triaxiality. Over the past several decades, a
number of methods such as Bridgeman correction technique have been proposed. In thisinvestigation a
new technique based on srain energy in introduced. Strain energy is assumed to be equa to the
external work in tensle test. The energy method is compared with different approaches such as
Bridgeman-Leroy, Bridgeman, Davidenkov, Siebel and optimization aided numerical smulation. The
resultsindicate that the energy method prediction is very close to numerical simulation, but at the same
time it does not differ too significantly from the other approaches studied in this investigation.
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NOMENCLATURE

a Diameter of neck section G, O, Gg Longitudinal, radial, tangential stresses Ce Equivalent/corrected stress

R Curvatureradius de, Equivalent strain W External work

CF  Correction factor de,, de., deg  Longitudinal, radial, tangential strains U Elastic strain energy

ey  Necking strain U, Plastic strain energy r=1(z) Neck profile function

oy  Necking stress H Head |oss energy K,n Power law material model parameter
€ Truedtrain u Strain energy density OBJ(x,y) Objective function

c True stress Wo_¢ External work done from start pointtofinal  u,,u, Displacement in ther and z direction
S Engineering stress Uo_t Strain energy from start to final point Ay Initial area

e Engineering strain Uun Strain energy in un-neck part of specimen Vo Initial volume

€, Averagelongitudinal strain Uy Strain energy in neck part of specimen Vun Un-neck volume of specimen

L, Initia length Ug_n Strain energy density from start to necking L¢ Final length

A¢  Final area Up—el Strain energy density of element

1. INTRODUCTION normally obtained from tensile test. The conversion of

ESS to TSS, however, holds only up to the onset of

True stress-strain curve represents the yield surface of a
material and is an essential requirement in the theory of
plasticity, particularly in simulations of large non-linear
plastic deformations. True stress-strain curve (TSS) is
obtained from engineering dress-strain curve (ESS)
which in turn is computed from load-displacement
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necking where stress becomes triaxial and the resulting
curve should be corrected to take account of stress
triaxiality. The correction of stress-strain curves after
necking has been the subject of many investigations
over the past several decades. Some of the
investigations are very complicated and not applicable
in practice. On the contrary, some of the investigations
are so smplified and yield only approximate correction.
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It seems that the first investigation was performed by
Bridgeman [1] who presented a comprehensive analysis
of stress and strain in neck area and proposed a
correction factor (CF), based on neck geometry, as
follows:

CF = [(1 + %) Ln(1+ %)]_1 + O¢ = CF.0rye @

In this correction method, the ratio R/a plays an
important role in computing the correction factor. R and
a are the radii of the neck curvature and the narrowest
neck section, respectively. This ratio must be computed
during tensile tests at some time intervals. This is a
tedious and time consuming task which is accompanied
by approximations which arise from simplifying
assumptions made by Bridgeman in his theory. Later,
Davidenkov and Spiridonova [2] and Siebe and
Schwaigere [3] separately proposed different relations
for correction factors asfollows:

_® 1 8(Davidenkov),
$1+(al2R) 4

cr=y® 1 9(Siebd)
§1+(al4R) 5

The correction factors proposed by Bridgeman,
Davidenkov and Siebel are known as classic relations.
One of the main difficulties associated with the classic
relations is the measurement of radius of curvature of
the neck during tensile test. In 1981 Leroy [4] proposed
a relation for calculation of the neck curvature radius.
The relation is expressed in terms of the current srain,
&, and the strain at the onset of necking, &y, as follows:

@)

==11(e—ey) ©)

Leroy et al. [4] have shown that for a wide range of
metals, the approximation due to the use of Equation (3)
for computing the ratio R/a is less than 25%. By
appearance of finite element method in mechanical
engineering, researcher employed finite dement codes
and programming to model the necking phenomenon.
Finite element capabilities enabled the researchers to
correct the stress-strain curves and investigate stress and
gtrain distributions in the neck area. Niddleman [5] used
finite element method for modeling the necking
phenomenon based on boundary problems and
plagticity. In 1998 Brunig [6] analyzed cylindrica
specimens under tension using large deformation finite
element analysis. Niordson and Redanz [7] modeled
necking in a thin rectangular plate using the strain
gradient plasticity theory already introduced by Fleck
and Hutchinson [8]. Their model is based on the delay
between maximum load and the onset of necking. Koc
and Stok [9] analyzed stress distribution in neck area
using Abagus software and introduced the inverse
method for correction of stress-strain curve. He also,
optimized the difference between |oad-displacement
curves from test and numerical simulation for stress-

gtrain curve correction. Tang and Lee [10] anayzed
necking in a bar under smple tension using a coupled
strain hardened and damage models. He studied the
effect of damage model on the necking phenomenon.
Since necking is inherently a consequence of damage
(void growth and coalescence), coupling of material
model with damage model can significantly improve the
correction techniques. Ling [11] introduced a specia
function for describing the relation between stress and
dtrain after necking. He obtained the function by
numerical simulation using Abagus. His anadysis was
based on optimization of the difference between
experimental and numerical |load-displacement curves.
A number of creative correction techniques have been
proposed by researchers such as Mirone [12]. His
method is applicable to a wide range of metals. Mirone
[12] presented some criteria independent of the type of
material and introduced relations for stress-strain
correction. Coppieters e al. [13] presented an
aternative method to identify the post-necking
hardening behavior of sheet metal. His method is based
on the minimization of the difference between the
interna and external work in the necking zone during a
tensile test. Eduardo [15] presented an experimental-
numerical methodology to derive the dastic and
hardening parameters which characterize the material
response. Yang and Cheng [16] introduced a damage
mechanics based model to describe the progressive
deterioration of materials prior to initiation of macro
cracks. Majzoobi et al. [17, 18] identified the constants
of Johnson—Cook, power law and Zerilli-Armstrong
models in tension and compression using a combined
experimental/ numerical/ optimization approach. The
model s take account of correction indirectly and thereis
no need for computing the correction factor directly.
Gromada et a. [19] anadyzed and estimated the
accuracy of the wel-known classicd formulae for
correction stress-strain curve.

In this work, a new technique based on strain
energy, caled energy method, is introduced. The
method is formulated using e ementary plagticity. The
corrected stress-strain curve obtained from energy
method is compared with those obtained from the
classic methods such as Bridgeman, Davidenkov, Siebel
and Bridgemen-Leroy approaches. The method is aso
evaluated by numerical amulation of tensile test using
Abaqus software. The profile of the neck is determined
from each ssimulation. Genetic algorithm is employed to
minimize the difference between the experimental and
numerical neck profiles. The main objective in this
investigation is to introduce the feasibility, basics and
capability of energy method. Therefore, some
simplifications are made into the method. The corrected
stress-strain (CSS) curve is assumed to be constructed
of two segments. The first segment follows a power law
curve, o = Ke™, which begins from the origin and
extends to the point of necking onset. In fact, the first
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segment corresponds to only uniform deformations. The
second segment is assumed to be linear, 0 = Ae + B,
begining from the point of necking onset and
terminating at the point of fracture. The values of K and
n are determined from a simple curve fitting to true
stress-strain curve. The correction of stress-strain curve
should in fact be applied to the line segment. Therefore,
congtants A and B are identified through energy and
classic methods mentioned above. These trends can be
applied to a considerable number of metals stress-strain
curve. Nevertheless, as will be explained in the next
sections, there is no limit for the kind of stress-strain
trend used in energy method.

2. THEORY OF ENERGY METHOD

Engineering dress-strain curve obtained from load-
displacement curve can be converted to true stress-strain
diagram through the relations [11]:

oc=S(1+e)e=Ln(1l+e) 4

in which e, e, Sand ¢ denote engineering strain, true
strain, engineering stress and true stress, respectively.
Equations (4) hold up to the point of necking. True
strain can also be computed from therelation [12]:

E=l=ln=2nY ©)

in which A, L and D are cross sectional area, length and
diameter, respectively. The diameter, D, of the specimen
must be determined from tensile tet usng a speed
camera aong with some graphical manipulation known
as image processing. Thistechnique is used to determine
the diameter of specimen which in turn is used for
caculation of stress and strain (gtrain is calculated from
Equation (5) and dress is computed from P/A). In this
technique, some marks are printed on the specimen
before deformation. The marks are displaced during
deformation. The displacement of the marks is recorded
using a camera with 30 fps (frames per second). Also,
the diameter, profile and length of the specimen’s neck
are measured from the recorded images of the specimen
versus time. The diameter is used for calculation of true
stress and strain and the neck profile is used for
calculation of R which is needed for computing
correction factor in Bridgeman and some other methods.
The subscripts 0 and f also denote the initial and final
values of the dimensons, respectively. The stress-strain
curve obtained using Equations (4) and (5) must be
corrected after the point of necking. As a matter of fact,
stress triaxiaity at neck area necessitates the stress-
strain diagram to be corrected. Effective stress and
strain for an axisymmetric analysis which is the case for
tension of a cylindrical specimen are given by [11]:

0, = 5l(0, = 0)* + (0, — 99)* + (3 — )12 (6)

de, =2 [(de, — de,)? + (de, — deg)?+ (deg — dg, )12 (7)

wherer, z and 0, are radial, longitudinal and tangential
directions of the dstress and strain  components,
respectively. From the volume constancy in plastic
deformation we have [11]:

de, +de. +deg =0 8
In axisymmetric deformation we can write:

de, = —2de, = —2dgg 9
Substituting Equation (9) in Equation (7), we get:

de, = ds, (10

The corrected stress-strain curve can be presented in
different forms. In some cases, it is displayed only in
graphical form. However, in most cases, the corrected
curve is described by empirica equations such as
Holomon, Ludwick constitutive equations, etc. It can be
assumed that for a conservative system (neglecting the
effects of friction and hysteresis) the externa work
which is the area under the load-displacement curve is
equal to the interna energy which is related to the area
under the stress-strain curve. This assumption can be
expressed as follows:

W=U,+U,+H (12)

in which Wis the external work, H the loss of energy
due to friction, etc. and U, and U,, are élastic and plastic
strain energy, respectively. If the effect of strain energy
which is smal compared to plastic energy and the loss
of energy are neglected, then we will have:

W=U,=U (12)
where, the external work can be expressed by [13]:
W= [P.ds (13

P and 6 represent the load and displacement in tensile
test, respectively. For more accuracy, extensometer is
used for measuring the elongation of the specimen. On
the other hand, strain energy per unit volume is defined
by [14]:

u= f()'ijdsi]' (14)

For an axisymmetric tensile specimen, Equation (14)
can be rewritten as:

u = [(o,de, + 0,.ds, + ogdeg) (15)
Using Equation (9) we can write:

u = [(o,de, — 0.50,.de, — 0.504ds,) = [ [cz - (16)
> (0 + 09)| e,

From the elementary plasticity we have[11]:

dsz = C;_S: 0z — %(o-r + 66)] (17)

combining Equations (10), (16) and (17), yields:
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u= f[;—;dsz]dsz = [o.de, (18)

This equation implies that the area under the effective
stress-strain curve is equal to the strain energy density
in a tensile cylindrical specimen. The equation is the
basis for the current investigation. The equality of the
areas under engineering and true strain curve which
extends to the point of necking can be proved by
differentiating from Equation (4) as follows:

de=-"" ... ode=S(1+e).- = = Sde (19

T 1te’
Therefore, we can write;
f;lz ode = f:lz Sde e<ey (20)
From Equations (12), (20) and (18) one can write;
% = f:lz Sde = f;lz odee < ey (21)

Equation (20) does not hold after necking. The reason is
that each point in neck area experiences different stress
and strain. Therefore, a different equation isrequired for
describing the relation between engineering and true
stress-strain curves after necking. This is accomplished
using energy method in this work. The maximum stress
and strain occurs in the neck area. However, the stress
and drain experienced by other points located on
different sections lie exactly on the same stress-strain
curve. Therefore, for determining the strain energy of
specimen the following egquation must be used:

U= fudV=]][oc.de.dV (22)

For computing the energy from Equation (22) we need
to have the stress distribution within specimen. Thisisa
difficult task. Here, a new approach is proposed for
computing the strain energy as follows:

Wo—¢= Uog—¢ (23

where W,_rand U,_, are the externa work and the
strain energy of the specimen, from start till fina point
respectively. Strain energy can be written as:

Upr= [ J* ocdee.dV (24)

We can divide the strain energy of specimen into two
parts. Part one is the strain energy in the un-necked
region where deformation is uniform. Part two
corresponds to the strain energy in the neck region. We
can write:

Ug_¢ = Uyn + Uy (25

where Uy, isthe strain energy in the un-necked part
and Uy is drain energy in the neck region of the
specimen. We have:

Uyn = uo-n-Vun (26)

where u,_yis the strain energy density from 0O to the
necking onset.

Trure stress (MPa)
- 4 BEH

Figure 1. The energy of adisk fype element in neck area

In order to compute the energy equation from tensile
test in neck region (Uy), an infinitesimal cylindrical
element is considered in the neck region as shown in the
figure A key point is that equivalent stress in neck
section is the same over the entire area of the section.
This is one of the assumptions in Bridgeman method
with the maximum error of around 0.5 percent [19].
This assumption has been used by some other
researchers such as Eduardo and Celentano [15] as well
and is considered in the numerical results presented in
this work too. Therefore, each eement can be
considered as a solid disk with constant equivalent
stress. For this dement in neck region, the total strain
energy can be written as.

dUy = (fos‘* 0ede,).dV = Ug_gp. AV (27)

where ¢, is equivalent strain corresponding to the
eement. Also, u,_.,is the drain energy density of the
element that equals to area under strain-stress curve till
the point of the element fracture rain. Thisis shown in
Figure 1. The volume of the element can be expressed
as follows:

v =m.r?.dz (28)
where r is the radius of the dement and can be
expressed by r=f(z). By substituting Equation (28) into
Equation(27), strain energy density of the element can
be determined as follows:

dUy = Ug_g. . {f(2)}?.dz (29)

Therefore, the total strain energy for specimen can be
written as:

Uy =[ Uy =2 [ oede ] m{f@Ydz - (30)

where L, is the neck length of specimen which is
determined using image data obtained from tensile test.
By subgtituting the strain energy from Equation (30) and
Equation (26) into Equation (25),we get:

Ugor = UpnVon + 2 [)N?[[ ode n{f(2)}2dz - (3D)

Equation (31) gives the total strain energy of specimen.
This equation can be written in different form as
follows:



1291 G. H. Majzoobi and F. Fariba/ IJE TRANSACTIONS B: Application Vol. 27, No. 8, (August 2014) 1287-1296

fose o_edse = fosN o_edse + f;]: o_edse =SUpn Tt f;]: o-edse (32)
The second term in Equation (31),can be written:

/ e _ / e
11 oede] v = [ [ugo + [ oede, | AV (33)

We can write:

fLNIZ

_ Ln/2
o TUgon.dV = Ug_n. ],

MV =2 ug_y Vy (39
where, V,, is the neck volume of specimen. By
substituting Equation (34) into Equation (33), and using
Equation (31) with volume constancy principal in
plastic deformation we obtain:

Uoor = Upoy. Vo + 2 [ [ oede| mAf@Y.dz  (39)

Having determined the strain energy of the specimen,
we can write the energy balance equation for a
cylindrical specimen in tensile test as follows:

Wo_f = fOSfP-d‘S =Ug—f = Up-n-Vo +
2 [ [ 0dee ] AT(2)} dz

This equation can be used for computing the corrected
stress-strain curve. For this purpose, Equation (36) must
be solved by a numerical method. We assume a linear
relation between stress and drain after necking (as

stated before) and a second order polynomia for the
profile of neck as follows:

o,=Ae, +B (37)

(36)

r=Cz2+CZ +Cy (39
These assumptions are quite optional and the method
presented here, can accommodate any other trends for
stress-strain curve and neck profile. By substituting for
o and r from Equations (37) and (38) into Equation (36)
we get:
8¢ — oA 2 2
P.dd =ug_nVo+ 22 |(=)(ee®—ex) +
fo 0-NVo fo [(2)2( N) (39)
B(ge—en) + (C122 + Coz + C3) ]dz

By rearranging Equation (39) in terms of A and B, we
obtain:

o[ (e2 - R)(Caz? + Caz + C)a]|
+2Bm [fOL?N[(Se —eyn). (Ciz%2 + Cyz + C3)2dz]] (40)

= [2'P.d8 — Uo_n. Vo
On the other hand, the stress-strain relation after
necking can be written for the point of necking onset.
Therefore, we can write;
oy = Aey + B (42)
From the simultaneous solution of Equations (40) and
(41), the values of A and B can be determined.

3. TENSILE TEST AND SPECIMEN

Tensile tests were conducted on a 60 tons Ingtron testing
machine. Specimens were made of stedl st304 prepared

according to the standard ASTM-E8 [20]. The dog bone
type specimens had a gauge length of 55 mm and a
diameter of 9.86 mm. The tensile tests were carried out
a 5 mnymin a room temperature. A DCR-HC32E
handy cam with 30 frames per second was used to
capture the deformation of specimens before and after
necking. From the recorded images, the dimensons and
profile of the neck were measured. The resolutions of
the images were enhanced using graphical software and
the required data were extracted using point detection
software named as Gate Data and Digitizer. Typica
deformation of marked specimens is illustrated in
Figure 2. The load-displacement and stress strain curves
of the specimen are shown in Figures 3 and 4,
respectively. The engineering stress-strain curve, the
true stress-strain diagram obtained using Equation (4)
and the true stress-strain curve extracted from image
processing (drain is calculated from Equation (5) and
stress is computed from P/A) areillustrated in Figure 4.
As the figure suggests, the two types of the true stress-
strain curves are quite different after necking. In order
to validate the image processing used in this work, the
smallest neck area was measured from the images taken
by camera and was cal culated using the relation[11]:
A=Ay(e)~¢ (42
The results are illustrated in Figure 5. As the figure
suggests, the results of both methods nearly coincide up
to the point of necking. After necking, the two methods
yield different predictions due to invalidity of Equation
(42) after necking. This validates the image processing
technique used in this work on one hand and confirms
the invalidity of Equation (4) for computing true stress
and strain after necking on the other hand. From a curve
fitting to the true stress-strain curve and using a
piecewise function defined by a power law followed by
aline, we can easily obtain:

{a =Ke"e<gy, K=1948, n =046

oc=As+Be>¢y, A=1287 B =767 43

Figure2. Two'sequences of atensletest
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Figure 3. The load-displacement curve of the specimen
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Figure5. Variation of neck cross sectional area versustime

TABLE 1. Three dimensons measured through image
processing

. Diameter of Thelength of
. Diameter of ) )
Time(s) neck (mm) unnecked region neck region
(mm) (mm)
dart 9.86 9.86 No neck
60s 9.36 9.36 No neck
120s 9 9 No neck
210s 8.55 8.55 No neck
320s 8.09 8.09 No neck
360s 7.64 8.18 10.7
370s 7.27 8.18 12.7
380s 6.36 8.18 13.6
Fracture 6.14 8 20.91

The dtress-strain curve obtained using Equation (43)
coincides exactly with that shown in Figure 4. This
illugtrates the accuracy of the constants obtained from
curve fitting. However, the true stress-strain shown in
Figure 4 is not usable after necking and should be
corrected taking account of stress triaxiality after
necking. Three dimensions were measured from image
processing at different times. These were: smallest neck
diameter (a), diameter of specimen in uniform
deformation zone (r) and the length of neck area (Ly).
These dimensions will be used for numerical
simulations and also for energy method which isthe main
subject of thiswork. Theresultsare given in Table 1.

4. INPLEMENTATION OF ENERGY METHOD

The calculation of strain energy could be performed in
two steps, before and after necking. The following
information isneeded for energy calculation:

1- The load-displacement curve which is obtained from
tensile test.

2- Theinitia length and volume of specimen, Ly, Vo.

3- The amallest neck diameter, a, the final length of
specimen, Ly, the neck length, Ly.

4- The drain at the onset of necking, ey, which can be
obtained from true stress-strain curve shown in
Figure 4.

5- The constants of profile relation given by Equation
(38). The congtants are determined by fitting the
experimental neck profile to a 2™ order polynomial.
This profile is not needed for the method of dividing
the neck area into disk type elements. By writing a
simple algorithm, the energy can be computed. The
algorithm follows the procedure as described in the
following sections.

4. 1. Before Necking In this case, the stress and
strain are uniformly distributed in the specimen.
Therefore, using a trapezoidal rule, true stress for a
known strain can be computed from the relation:

[(e; — 1) x 0.5(s; + 5)] = [(&2 — &) X Gcore] (44
where, o,,,, IS the corrected true dressUsing this
procedure we end up with a stress-strain curve which
was already obtained in section 3 and was shown in
Figure 4. The resulting stress-strain curve is exactly
similar to true stress-strain illustrated in Figure 4.

4. 2. After Necking In the first type of energy
method, the profile of the neck exactly before fractureis
needed. The profile can be obtained using a projector.
Assuming a second order polynomial for defining the
experimental neck profile we can write:

r =0.0112% + 0.2z + 3.06 (45)

The neck profile obtained from image processing and
Equation (45) are compared in Figure 6. As the figure
suggests, Equation (45) accurately represents the neck
profile. Therefore, this equation can be used with
confidence for application of energy method. The
volume of neck area calculated using Equation (45) and
the experimental profile using image processing are
compared in Table 2. As it is seen, the difference is so
small and negligible. Variation of external work versus
displacement and the external energy versus strain are
depicted in Figures 7 and 8, respectively.

b

M
ok minw s

w

r {mm)

=]

a 2 4 5 s 10 12

7 imml

Figure 6. Comparison between the neck profiles from image
processing and Equation (45)
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TABLE 2. Comparison between the measured and the
computed neck volumes

Initial volume of specimen (mm?) 43175

The volume of uniform region after fracture (mm®) 3374

The neck volume computed from the above two 0435

3) .

measurements (mm

The neck volume computed from the proposed neck 012.34
. 3) .

profile (mm

Error in volumes % 3.3031

It is assumed that after the onset of necking,
deformation accumulates only in neck area. In order to
express Equation (40) in terms of the constant A and B,
it must be integrated using a numerical method. The
procedure of the method can be summarized as follows:
I. The strain a necking onset, ey, and its corresponding
stress are obtained from Figure 4. Substituting these
parametersin Equation (41) we can write:

1363 =0.46A+B (46)

The energy density, u,_y, is measured from area under
true stress-strain curve extending from origin up to the
onset of necking. The strain energy due to uniform
deformation is obtained from U,_y = uy_y.V,. The
energy of uniform deformation for the test conducted in
this work, is obtained 1.84 kJ and its density uy,_y =
426.4 MIm3.Thisisthe total strain energy of the total
volume of specimen before necking.

[I. The total externa work from the beginning till
fracture, is measured from load —displacement curve, or
from Figure 7 as: [/ P. d = 1986810).

[11. The constants of profile equation are determined as
Equation 45.

In this method, for integrating Equation (40), neck
region isdivided to n=100 disks with equal length, Az =
0.1. The region begins from z =0and extends to

z =" = 1045 mm. The coordinate z for each diskis

2

calculated byz; = Az + z;,_; .After caculation of z, the
radius of disk can be computed from Equation (45).

V. Longitudinal grain, &, for each disk is calculated as
follows:

& =1Ln (5), &, = &, = —2¢, 47
where r is the average radius of the disk that is
caculated in step ii and ry is the initial radius of
specimen. It is to be mentioned that longitudind and
effective strains are equa (see Equation (10)).The
computed equivalent strain is then substituted in
Equation (40). After subgtituting the computed
parameters, ey and uy_y(from step i) e, (from stepiv), r
(from step iii) and the externa work (from step ii) into
Equation (40) and integrating, the equation reduces to:
40.378A + 113.853B = 145828(48)

V. Equations (46) and (48) are solved to give the values
of the constants A and B:

A= 779.617 and B=1004.378.

5. VALIDATION OF ENERGY METHOD

The congtants A and B are determined using several
approaches. Optimization aided numerical simulation,
Bridgeman-Leroy method and Bridgeman, Davidenkov
and Siebel approaches are used for validation of energy
method.

5.1.Numerical Simulations  Numerical smulation
is used for validation of energy method. For this, the
constants A and B are computed through smulation of
tensile test and necking. In this approach, A and B are
determined in a way that the experimenta and
numerical profiles of neck coincide. In order to do this,
Genetic adgorithm is employed to minimize the
difference between the two profiles. Numerica
simulations are performed using Abaqus software.
Because of symmetry, only % of the specimen is
modeled. The model consists of 840 eements of the
type CAX4R. This number of elements corresponds to
the convergence of the results. The numerica modd, its
boundary conditions and a typical deformation after
necking are shown in Figure 9. Thelower surface of the
specimen (z=0) is constrained againg movement in z-
direction(u, = 0). The specimen is loaded by applying
a displacement of u, = 155mm in z direction which
simulates exactly the position control loading in the
tensile tests. An objective function is defined as follows
[18]:

OBI(X,y) = a; + ayX + azy + a,xy + agx® + agy? +
a,x2y? (49)
where, x and y denote the unknowns A and B,
respectively. On the other hand, objective function is
also defined by:

0BJ = /(die = d1n)? + (dze — d2n)? + (d3e — d3n)?  (50)
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in which the subscripts e and n denote the experimental
and numerical values of neck diameter. Three points on
the neck are designated for the optimization process as
shown in Figure 10. The points are located 5 mm apart
with respect to the narrowest neck section. The
experimental three neck diameters are measured through
image processing technique. The numerical diameters
are calculated for 7 different sets of A and B values as
given in Table 3. The objective function is computed
from Equation (50) and is substituted in Equation (49).
The linear system of resulting seven equationsis solved
for the seven coefficients of Equation (50). The results
are given in Table 4. The equation is then optimized
using Genetic algorithm. The optimum values for A and
B are obtained as A=807 and B=965.

Figure 9. The boundary conditions and a typical deformation
after necking

T
‘[\
daf2 d,/2
2 dy/2
¥ ¥
5 mm 5 mm

Figure 10. The designated points on the neck area for
optimization purpose

TABLE 3. Seven different sets of A and B and ther
corresponding d’s

A B MODEING TEST

Item dl  d2 d3  dl_d2 d3
1 1045 864 698 74 76 61 66 81
2 870 938 48 734 8 61 66 81
3 1203 798 606 72 792 61 66 81
4 1100 841 752 78 8 61 66 81
5 905 923 497 732 808 61 66 81
6 607 1050 771 78 772 61 66 81
7 7035 1009 775 796 8 61 66 81

TABLE 4. The constants of Equation 49

al a2 a3 a4 a5 a6 ar

-40413.38 -32535 135642 0 00147 -00798 O

3.5
3.4 r=0.105z2- 0.0236z + 3.048
: R? = 0D.998
3.3
E A Measurement /
E 32
= /
3.1
ﬂ‘-——l——"‘""’”—
3
o] 0.5 1 1.5 2
Z {mm)

Figure 11. The experimental and computed profiles of neck of
tested specimen

From measurement

Rfa (mm/mm)

06 0.7 08 L] 1
STRAIN (mm/mm})

Figure 12. Variation of the ratio R/aversustime

5. 2. Bridgeman-Leroy Method In this method, the
radius of neck curvature and the correction factor are
obtained through the Equations (1) and (3). As. A=758
and B=1000.

5. 3. Bridgeman, Davidenkov and Siebel(B-D-S)
Approaches  In B-D-S models, the correction factor
isafunction of R/ain which Risthe curvature radius of
the neck. The neck profile is described by a second
order polynomial. In this approach we can write:

1 _ d? d?r

R o = 0z (51)
The profile of the specimen exactly before fracture,
tested in this work and the second order polynomial
describing the profile are shown in Figure 11.
Therefore, for Bridgeman method we have:
1=Cr_021 R=476 “=1.561 (52)
The R/a ratio is required for computing the correction
factor in Bridgeman and some other methods. This
parameter is conventionally measured from the fracture
specimens. The two segments of the fractures specimens
are put together and the radius curvature is measured
using a projector which magnifies the neck region for
more accurate profile and curvature measurements.
However, using image processing technique the values
of a and R are measured at different timesin this work.
At the necking onset, curvature and consequently the
ration R/a are obvioudly very large but at the point of
fracture the ratio reaches its minimum. Variation of the
ratio R/aversustime is shown in Figure 12.
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Figure 13. Corrected stress-strain curves obtained using
different techniques

TABLE 5. The values of strain energy and the external work

Item Energy (KJ)
External work 1.98681
Total gtrain .energy of specimen 1.84098
before necking

Strain energy of neck region 0.14583
Total strain energy of specimen 1.98681
% Error -0.00016

TABLE 6. The values of A and B obtained using different
approaches and their errors respect to numerica method.

Bridg.- . . !
Energy Nume Leroy Bridg. David Sieb.
A 796 o 758 799 7556 7026
(Mpa)  (3.4%) (6%) (0.8%) (65%) (13%)
B 0044 . 1000 9954 10153 10396
(Mpa)  (4%) (6% (31%) (51%) (7.6%)
;ﬁ‘;‘s 1784 ., 1758 17943 1771 17423
Mpay  (©6%) (0.8%) (12%) (01%) (L.7%)

The curvature radius is the same for all the three
methods. The values of A and B for each method is
provided in Table 5.

5. 4. External Work and Strain Energy Thevalues
of exteena work and the tota strain energy
corresponding to the neck and uniform areas of the
deformed specimen are compared in Table 5. The tota
energy has been computed from energy method and the
external work has been calculated from the load-
displacement curve. As the table suggests the difference
between the computed strain energy and the external
work is absolutely small and quite negligible. This
could be regarded as a benchmark for evaluating the
accuracy of the method adopted in this investigation.

6. DISCUSSION

The values of A and B obtained using different
approaches described in this work and ther
corresponding  corrected  stress-strain - curves  are
provided in Table 6 and shown in Figure 13,
respectively. It is hard to say which method gives the

best accuracy particularly when the results for the
proposed method, Bridgeman and Bridgeman-Leory are
very close. If we take the optimization method as a
benchmark, it can be observed from Table 6 that best
agreement is obtained for energy method and
Bridgeman approach. We compared the differences of
the quantities with respect to their corresponding
numerical values given in the 3 row of Table 6. The
differences are given in parenthesis in the same table.
The methods can now be compared more clearly with
each other. The firg interesting point is that the
differences(except one case for Siebe) are well below
10%. As the results indicate and as far as A and B are
concerned, Siebel gives the worst results and the
proposed model and Birdgeman provide the best results,
although differentiation between the proposed model
and Bridgeman is difficult. We think that the dominant
parameters in defining the corrected stress-strain curve
are A and B and fracture strain is less important. The
reason is that fracture strain is obtained from the
fractured specimen. When the two parts of the broken
specimens are put together to measure the neck section,
the two parts usually don’t match exactly and therefore,
the fractured neck diameter is always accompanied by
some errors. As a result, we can conclude that the
performances of the proposed model and Bridgeman
model are close. It is a fact that al researchers have
made some simplifications in their correction models.
However, we may argue tha optimization aided
numerical simulations provide the most accurate
prediction, because it provides the best agreement with
the experiment for the neck profile. Having accepted
this as the benchmark for assessing the accuracy of the
models, we can see that the good agreement is obtained
for the energy method discussed in this work.

7. CONCLUSIONS

From the results of this investigation, the following
conclusions may be derived: 1. Energy method
presented in this work, can be used with confident for
correction of stress-strain curves. The method makes
use of the principal of equality of strain energy and the
external work for conservative systems. 2. In this work
and for the sake of simplicity, stress-strain curve has
assumed to follow a power law trend before the onset of
necking and a linear trend after necking. However, the
method is not limited by the type of trend of stress-
strain curve and can adopt any trend describing the
stress-strain relation. 3. The method uses neck profile
exactly before fracture and engineering dress-strain
curve for obtaining the corrected true stress-strain curve.
The profile is described by a second order polynomial.
The method, however, can use other polynomias as
neck profile. 4. The degree of correction enforced by
energy method is not far from those predicted by other
methods studied in thisinvestigation.
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