A BASIC PERIOD APPROACH FOR SOLVING THE ECONOMIC LOT AND DELIVERY SCHEDULING IN FLEXIBLE FLOW LINES

S.A. Torabi*
Department of Industrial Engineering, College of Engineering, University of Tehran
P.O. Box 11155/4563, Tehran, Iran
satorabi@ut.ac.ir

M. Jenabi
Department of Industrial Engineering, Amirkabir University of Technology
P.O. Box 15916-343, Tehran, Iran
m.jenabi@aut.ac.ir

*Corresponding Author
(Received: October 9, 2007 – Accepted in Revised Form: May 9, 2008)

Abstract In this paper, the problem of lot sizing, scheduling and delivery of several items in a two-stage supply chain over a finite planning horizon is studied. Single supplier via a flexible flow line production system (FFL), produces several items and delivers them directly to an assembly facility. Based on basic period (BP) strategy, a new mixed zero-one nonlinear programming model has been developed with the objective of minimizing the average setup, inventory-holding and delivery costs per unit time in the supply chain without any stock-out. The problem is very complex and it cannot be optimally solved, especially in real-sized problems. So, an efficient hybrid genetic algorithm (HGA) has been proposed based on applying the most applied BP approach i.e. power-of-two policy. Based on some problem instances, the solution quality of the algorithm has been evaluated and also compared with the common cycle approach. Numerical experiments demonstrate the effectiveness of the proposed HGA.

Keywords Flexible Flow Lines, Lot and Delivery-Scheduling, Basic Period Approach, Power-of-Two Policy, Hybrid Genetic Algorithm (HGA)

1. INTRODUCTION

Nowadays, there is a great tendency to develop integrated models in research community for simultaneously cost-effective planning of different activities in supply chains. Among them, integrated production and delivery planning between adjacent supply parties is of particular interest which can reduce the total logistics-related costs considerably.

Literature review reveals that one of the earliest studied problems in this area is the economic lot scheduling problem (ELSP). This problem addresses lot-scheduling of several items with static and deterministic demands over an infinite planning horizon at a single facility, where products are delivered to the customer...
Researches on the ELSP usually focus on cyclic schedules (i.e., schedules that are repeated periodically) with three well known policies: common cycle, basic period (or multiple cycle) and time varying lot size approaches (Torabi, et al [1]). Several authors have extended the ELSP to multistage production systems with common cycle production policy [e.g., 2-9].

The economic lot and delivery-scheduling problem (ELDSP) is an extension of ELSP to a two-stage supply chain where a supplier produces several items for an assembly facility and delivers them in a static condition. Hahm, et al [10,11] provided an excellent review of models related to ELDSP and developed two efficient heuristic algorithms to solve, based on common cycle and nested schedule strategies, respectively. Jensen, et al [12] developed an optimal polynomial time algorithm for the ELDSP under common cycle approach. Finally, Torabi, et al [5] considered the ELDSP in flexible flow lines under common cycle approach and over a finite planning horizon. They developed an effective HGA to obtain near (or ideally optimal) solutions.

Regarding the basic period (BP) approach, Bomberger, et al [13] assumed different production cycles for items in which each cycle time must be an integer multiple of a BP that is long enough to meet the demand of all items. The production frequency of each product during the global cycle is then determined as a multiple of the selected BP. In such a case, infeasibility results from the artificial restrictions are imposed by the concept of BP. Elmaghraby, et al [14] provided a review of the various contributions to ELSP and presented an improvement upon the BP approach, called extended basic period (EBP) method. Its main difference from Bomberger's BP method was that it allowed items to be loaded on two BPs simultaneously and at the same time relaxed the requirement that, the basic period should be large enough to accommodate such simultaneous loading. Yao, et al [15] developed an evolutionary algorithm for ELSP under basic period policy. Also, Ouenniche, et al [16-18] proposed three efficient heuristic approaches, i.e. power of two, two groups and G-group methods for the ELSP in a flow shop systems over an infinite planning horizon under basic period approach.

In all the above works, the planning horizon is assumed to be infinite. However, this assumption considerably reduces the usefulness of the proposed contributions, because in practice, planning horizon is often finite. In this regard, there are few research works which have assumed the finite planning horizon [1,2,5,19]. Consequently, to the best of our knowledge, there is no research on ELDSP in flexible flow lines under basic period approach over a finite planning horizon so far. It is noted that the solutions obtained via the basic period approach are generally better than the common cycle's solutions, and this is our main motivation in this research work.

In this paper we have studied the finite horizon economic lot and delivery scheduling problem in flexible flow lines under basic period approach. At first, a new mixed zero-one nonlinear program has been developed whose optimal solution simultaneously determines; the optimal assignment of products to machines at stages with multiple parallel machines, the optimal products sequence for each machine at each stage, the optimal lot sizes and the optimal production and delivery schedule at each global cycle.

To solve the problem, we assume that the cycle time of product i, T_i, is an integer multiple, say k_i, of a basic period F; i.e. $T_i = k_i F$ for all i. In addition we are required that the basic period F to be such that the planning horizon PH is an integer multiple of a global cycle $H F$; that is $PH = r H F$ where r is an integer and H denotes the least common multiple (LCM) of the k_i's. Consequently, to solve the problem, a hybrid genetic algorithm (named PT-HGA) has been proposed based on power of two policy (the most applied BP strategy).

The outline of the paper is as follows: problem formulation has been presented in Section 2. The proposed HGA have been explained in Section 3. In Section 4, an efficient procedure has been developed for determining upper bounds on k_i values. An efficient feasibility test for capacity checking along with an iterative repair procedure based on k_i values modifications to convert an infeasible solution to a feasible which are also proposed in Section 5. Computational experiments are provided in Section 6. Finally, Section 7 is devoted to conclusion remarks.
2. PROBLEM FORMULATION

The following assumptions are considered for the problem formulation:

- Machines at stages with multiple parallel machines are identical (in all characteristics such as production rates and setup times/cost).
- Machines of different stages are continuously available and each machine can only process one product at a time.
- At stages with parallel machines, each product is processed entirely on one machine.
- Setup times/costs in supplier's production system are sequence independent.
- Production sequence at each basic period for each machine at each stage is unique and is determined by the solution method.
- The supplier incurs linear inventory holding costs on semi-finished products.
- Both the supplier and the assembler incur linear holding costs on end products.
- Preemption/Lot-splitting is not allowed.

Moreover, the notations used for the problem formulation are defined as follows:

Parameters

- \(n \): Number of products
- \(m \): Number of work centers (stages)
- \(m_j \): Number of parallel machines at stage \(j \)
- \(M_{k'j} \): K'-th machine at stage \(j \)
- \(d_i \): Demand rate of product \(i \)
- \(p_{ij} \): Production rate of product \(i \) at stage \(j \)
- \(s_{ij} \): Setup time of product \(i \) at stage \(j \)
- \(sc_{ij} \): Setup cost of product \(i \) at stage \(j \)
- \(h_{ij} \): Inventory holding cost per unit of product \(i \) per unit time between stages \(j \) and \(j+1 \)
- \(h_i \): Inventory holding cost per unit of final product \(i \) per unit time
- \(A \): Transportation cost per delivery
- \(PH \): Planning horizon length
- \(M \): A large real number

Decision Variables

- \(\sigma_k \): Sequence vector in basic period \(k \)
- \(\sigma_{k'j} \): Sequence vector of machine \(M_{k'j} \) related to the basic period \(k \)
- \(r \): Number of production cycles over the finite planning horizon
- \(n_{k'j} \): Number of products assigned to machine \(M_{k'j} \) related to the basic period \(k \)
- \(F \): Basic period length
- \(b_{ij} \): Production beginning time of product \(i \) at stage \(j \) (after related setup operation)
- \(k_i \): Time multiple of product \(i \)

The objective function of this problem (Problem P) includes two fundamental expressions. First expression is related to the setup and transportation costs. This expression consists of two parts: the first part computes the setup cost of products with respect to their production cycle times. The second part computes the transportation cost of products on each basic period.

\[
C = \sum_{i=1}^{n} \sum_{j=1}^{m} \left(\frac{sc_{ij} A}{k_i F} + \frac{A}{F} \right).
\]

The inventory holding costs are often more complicated which are incurred at both the supplier and the assembler. Figure 1 shows the inventory level of final product \(i \) in one cycle at the assembly facility is \(\frac{1}{T_i} \left(d_i T_i \frac{T_i}{2} \right) = d_i T_i / 2 \). Therefore, the average inventory of component \(i \) per unit time at
the assembly facility will be:

\[F = \frac{n}{2} \sum_{i=1}^{n} h_i k_i d_i \]

Two types of inventories i.e. WIP and finished product inventories are considered for the supplier. Figures 2 and 3 show the evolution of WIP inventory of product i between two successive stages \(j-1 \) and \(j \), and the inventory level of final product i, respectively.

From Figure 2 it is obvious that the average WIP inventory of product i between two successive stages \(j-1 \) and \(j \) per unit time is:

\[I_{i,j-1} = \frac{1}{T_i} \left(\frac{d_i T_i}{2} \frac{d_i T_i}{p_{i,j-1}} + d_i T_i \left(b_{i,j} - b_{i,j-1} - \frac{d_i T_i}{p_{i,j-1}} \right) \right) + \frac{d_i T_i d_i T_i}{2 p_{i,j}} \]

\[= d_i \left(b_{i,j} + \frac{d_i k_i F}{2 p_{i,j}} - b_{i,j-1} \right) \left(b_{i,j} - \frac{d_i k_i F}{2 p_{i,j-1}} \right) \]

Figure 1. Inventory level at the assembler in one cycle.

Figure 2. WIP between stages \(j-1 \) and \(j \) at the supplier.

Figure 3. Final product inventory at the supplier.
Therefore, the total WIP inventory holding cost for all products per unit time at the supplier would be as follows:

\[TC_{WIP} = \sum_{i=1}^{n} \sum_{j=1}^{m} h_{i,j-1} d_{i,j} \left(b_{i,j} + \frac{d_{i,j} F_{i,j}}{2p_{i,j}} - b_{i,j-1} - \frac{d_{i,j} F_{i,j}}{2p_{i,j-1}} \right) \]

Also, from Figure 3, we can derive the average inventory of final product \(i \) per unit time:

\[I_{i,j-1} = \frac{1}{T} \left(\frac{d_{i,j} F_{i,j} \sum_{i=1}^{n} h_{i,j-1}}{2p_{i,j}} \right) + \frac{d_{i,j} F_{i,j} \sum_{i=1}^{n} h_{i,j}}{2p_{i,j-1}} \]

Thus, the total inventory holding cost for all final products per unit time is:

\[TC_{FI} = \sum_{i=1}^{n} h_{i,j-1} \left(1 - \frac{d_{i,j} F_{i,j}}{2p_{i,j}} \right) k_{i} F - \sum_{i=1}^{n} h_{i,j} d_{i,j} b_{i,j} \]

So, the total cost per unit time (i.e. objective function of Problem P) would be as follows:

\[TC = \frac{A}{F} + \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{s_{i,j} F_{i,j}}{k_{i} F} + \sum_{i=1}^{n} F_{i} \left(3 - \frac{d_{i,j} F_{i,j}}{p_{i,j}} \right) + \sum_{j=2}^{m} \frac{d_{i,j}^2}{2} \sum_{i=1}^{n} h_{i,j-1} \left(1 - \frac{1}{p_{i,j-1}} \right) \]

Regarding this objective function and logical relationships between variables of Problem P (that some of them are recognizable from inventory level curves), a mixed zero-one nonlinear model is developed to obtain optimal solution of the problem.

Problem P has the following set of constraints. Constraints (2) state that no product can be processed before it is completed at previous stage. Constraints (3) show that, no product can be processed before the completion of its predecessor in the related production sequence \((\sigma_{kk'}) \). Constraints (4) reveal that at each position of each machine, there is at most one product; because for each machine such as \(M_{k_j} \), may assign less than \(n \) products. Constraints (5) state that one product can be assigned at one position of machine \(M_{k_j} \); if another product is to be assigned at the previous position of this machine. Constraints (6) ensure assignment of product \(i \) to one of the \(k \) basic period and implies that each assigned product at each stage has a unique position in the sequence of one machine. Constraints (7) determine assignment of products in appropriate basic periods during the \(H \) basic periods. Constraints (8) denote that if product \(i \) has been assigned to basic period \(k \) at stage \(j \), it must be assigned to that basic period at all stages. Constraints (9) show that if product \(i \) is the first product in the sequence vector of one machine at stage \(j \), it’s processing cannot be started before setting up the corresponding machine. Constraints (10) assure that the resulting schedule is cyclic so that the process completion time for each product at final stage is less than or equal to a basic cycle time \(F \). Constraint (11) implies that the planning horizon \(PH \) is an integer multiple of \(F.H \), where \(H = \text{LCM} (k_1, \ldots, k_n) \), and \(F \) is the basic period length. Constraints (12) show that \(r \) is an integer greater than or equal to one. Finally, Constraints (13) are the non-negativity constraints of variables.
\[b_{ij} + \frac{d_k F_i}{p_{ij}} + s_{ij} - b_{uj} \leq M \left(2 - x_{i/k'kj} - x_{u(\ell + 1)k'kj} \right); \]
\[i = 1, \ldots, n, u \neq i; j = 1, \ldots, m; k' = 1, \ldots, m_j; \]
\[\ell < n; k = 1, \ldots, H; H = \text{lcm} \left(k_1, \ldots, k_n \right) \]
\[(3) \]
\[\sum_{i=1}^{n} x_{i/k'kj} \leq 1; j = 1, \ldots, m; k' = 1, \ldots, m_j; \]
\[\ell < n; k = 1, \ldots, H; H = \text{lcm} \left(k_1, \ldots, k_n \right) \]
\[(4) \]
\[\sum_{i=1}^{n} x_{i/k'kj} \leq 1; j = 1, \ldots, m; k' = 1, \ldots, m_j; \]
\[\ell < n; k = 1, \ldots, H; H = \text{lcm} \left(k_1, \ldots, k_n \right) \]
\[(5) \]
\[\sum_{k' = 1, \ell = 1}^{m_j} x_{i/k'kj} = 1; j = 1, \ldots, m; k = 1, \ldots, \frac{H}{k_i} - 2 \]
\[(6) \]
\[\sum_{k' = 1, \ell = 1}^{m_j} x_{i/k'kj} = 1; j = 1, \ldots, m; k = 1, \ldots, H \]
\[(7) \]
\[\sum_{i=1}^{n} x_{i/k'kj} \leq \sum_{k' = 1, \ell = 1}^{m_j} x_{i/k'kj} + 1; \]
\[i = 1, \ldots, m; j = 1, \ldots, k_i; b = 0, \ldots, \frac{H}{k_i} - 2 \]
\[(8) \]
\[b_{ij} \geq s_{ij} - M \left(\sum_{k' = 1}^{m_j} x_{i/k'kj} \right); j = 1, \ldots, m, \]
\[i = 1, \ldots, n; k = 1, \ldots, H; H = \text{lcm} \left(k_1, \ldots, k_n \right) \]
\[(9) \]
\[b_{im} + \frac{d_k F_i}{p_{im}} \leq F; i = 1, \ldots, n, \]
\[(10) \]
\[H.F.r = PH; H = \text{lcm} \left(k_1, \ldots, k_n \right) \]
\[(11) \]

It is noted that this model can be run for a set of known \(k_i \) variables. In other words, to run this model, at first the \(k_i \) values must be determined, and then the corresponding optimal basic period length, optimal assignments, sequence vectors and production and delivery schedule of products are obtained via solving Problem P.

3. Proposed hybrid genetic algorithm

During the last thirty years, there has been a growing interest in obtaining the optimal solutions for complex systems using genetic algorithms (GA). Genetic algorithms maintain a population of potential solutions and simulate evolution process using some selection process based on fitness of chromosomes and some genetic operators. To improve solution quality and to escape from converging to local optima, various strategies of hybridization have been suggested [5,20]. In designing a hybrid genetic algorithm (HGA), the neighborhood search (NS) heuristic usually acts as a local improver into a basic GA loop.

In our HGA, each solution is characterized with a set of \(k_i \) multipliers and the value of basic period \(F \). Beside the cost minimization; we have to generate feasible schedules. Therefore, a capacity feasibility test has been developed in Section 5 which is able to identify the infeasible solutions and converting them to feasible schedules.

3.1. Chromosome Representation

The proposed HGA search in the solution space of \(k_i \) values, so that each chromosome is a binary (zero-one) string, and each \(k_i \) multiplier will be represented as a particular part of a chromosome. For instance, the first \(u_1 \) bits are used to encode the value of \(k_1 \) and the particular piece of chromosome from the \((u_1+1) \)-th bit to the \((u_1+u_2) \)-th bit represents the value of \(k_2 \) and so on. In order to represent all the possible values of \(k_i \) for each item \(i \), we need an upper bound (see Section 4) on the value of \(k_i \) (or \(v_i \) so that \(k_i = 2^v_i \)). Because of

\[r \geq 1, \quad \text{and Integer} \]
\[F \geq 0; \quad b_{ij} \geq 0 \quad \forall i,j; \quad x_{i/k'kj} = \left\{ 0,1 \right\}; \quad \forall i, \ell, k', j, k. \]
encoding the value of \(k_i \) into a binary string, we have to establish a mapping between each binary string and an integer \(k_i \). In fact, we map a binary string consisting of \(u_i \) bits to an integer value \(k_i \) by using the following equations for the power of two and non-power of two cases, respectively:

\[
\begin{align*}
\sum_{j=1}^{u_i} b_j 2^{j-1} \times 10 & = k_i = 2^v_i \\
\sum_{j=1}^{u_i} b_j 2^{j-1} \times 10 & = (v_i)_{10} \\
\end{align*}
\]

3.2. Determining The \(\sigma_k \) Vectors In assigning and sequencing of products in different basic periods i.e. determination of \(\sigma_k \) vectors, it is not easy to derive a simple necessary and sufficient condition to have a non-empty set of feasible solutions. Given a vector of multipliers \(k_i; i = 1,\ldots,n \), the procedure starts to make a vector say \(V' \) by sorting the products in ascending order of \(k_i \) and, within the products having the same multiplier \(k_i \), in the descending order of \(\rho_i \) where:

\[
\rho_i = \sum_{j=1}^{m} \frac{k_i d_i}{p_{ij}}, \text{ } i = 1,\ldots,n.
\]

Each product \(i \) in the vector \(V' \) is assigned to the basic period \(t \) within the first \(k_i \) periods of global cycle \(H \) which minimizes:

\[
\max_{k=t+1+m_1 \ldots,m_n} \left\{ \max_{j=1,\ldots,m} \left(\sum_{u \in \sigma_k} \frac{k_i d_i}{p_{uj}} + \frac{k_i d_i}{p_{ij}} \right) \right\}
\]

Finally, for each \(k, k=1,\ldots,H \), we determine the sequence of products within \(\sigma_k \) such that if \(i, u \in \sigma_k \) and \(i \) is ordered before \(u \) in \(V' \), then \(i \) also is ordered before \(u \) in \(\sigma_k \).

3.3. Determining the \(\sigma_{kk_j} \) Vectors First available machine (FAM) rule has been employed to assign and sequence the products of each basic period to machines of different stages (Torabi, et al [5]. According to this procedure, for any given permutation vector \(V' \); the products are assigned to machines of first stage by using FAM rule (if \(m_1 > 1 \)). Then, for each of subsequent stages, the products have been first sequenced according to increasing order of their process completion time at the previous stage, and then assigned to the machines at the current stage according to FAM rule.

3.4. Initial Population Initial population of binary chromosomes is generated randomly. According to feasibility test, each infeasible solution is converted to a feasible one and then is inserted into the initial population.

3.5. Evaluation Function Each chromosome in the population represents a potential solution to the problem. Evaluation function is responsible for rating these potential solutions by assigning a real number as a measure of their fitness. In our problem after determining the \(\sigma_{kk_j} \) vectors for each chromosome, evaluation function is obtained by solving the following NLP model (Problem P1). This problem is derived from Problem P by substituting \(x_{i,kk_j} \) values by corresponding ones. Also, \(\sigma_{kk_j}(i) \) indicates the \(i \)-th product in the sequence vector of machine \(M_{k,j} \) in basic period \(k \). Problem P1 can be solved by the following iterative procedure:

Initial step. Let \(r = 1 \), and solve the resultant linear program.

Iterative step. Increase \(r \) by 1 and solve the corresponding linear program for this new value of \(r \). If this model has no feasible solution, stop; else, if the objective function for current value of \(r \) (i.e. \(Z_r \)) is less than this value for previous \(r \) (i.e. \(Z \)), then set \(Z = Z_r \) and \(F* = PH/r.H \), and go to the next iteration.

Problem P1:

\[
\min Z = \frac{A}{F} + \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{s_{ij}}{k_i} + \sum_{i=1}^{n} h_i k_i d_i \left(\frac{3 - \frac{1}{p_{im}}}{p_{im}} \right) + \sum_{j=2}^{m} \frac{h_{i,j-1} k_i d_i^2}{2} \left(\frac{1}{p_{ij}} - \frac{1}{p_{i,j-1}} \right) F^+ + \sum_{i=1}^{n} \sum_{j=1}^{m} h_{i,j-1} d_i (b_{ij} - b_{i,j-1}) - \sum_{i=1}^{n} h_i d_i b_{im}
\]
Subject to:

\[\begin{align*}
& b_{i,j-1} + \frac{k_{F,d}}{p_{i,j-1}} \leq b_{i,j} ; \quad i = 1, \ldots, n; \quad j = 2, \ldots, m \\
& b_{\sigma_{kkj}^{(i-1)},j} + \frac{k_{F,d}}{p_{\sigma_{kkj}^{(i-1)},j}} - \frac{k_{F,d}}{p_{\sigma_{kkj}^{(i-1)},j}} \leq b_{\sigma_{kkj}^{(i-1)},j} ; \quad i = 2, \ldots, n; \quad j = 1, \ldots, m; \quad k = 1, \ldots, k; \quad k' = 1, \ldots, m; \\
& k = 1, \ldots, m; \quad j = 1, \ldots, n; \\
& b_{l_{im}} + \frac{k_{F,d}}{p_{l_{im}}} \leq F; \quad i = 1, \ldots, n \\
& r.H.F = PH; \quad r \geq 1 \text{ and integer} \\
& F, b_{ij} \geq 0 \quad \forall i,j.
\end{align*} \]

3.6. Selection and Crossover Operators In proposed HGAs, we have used the tournament selection approach. It randomly chooses two chromosomes from parent pool, and then chooses the fittest one if a random value generated (τ) is smaller than a pre-set probability value \(\varphi \) (0.5 < \(\varphi \) < 1). Otherwise, the other one is chosen. Then, the selected chromosomes are duplicated and pairs of them are selected as parents to undergo the crossover operation.

The main purpose of crossover is to exchange genetic materials between randomly selected parents with the aim of producing better offspring. In this research we have used the classic two point crossover based on the results obtained from the initial tests. According to this crossover, at first two positions are randomly selected, and then the genes between them in the parent chromosomes are exchanged (see Figure 4).

3.7. Mutation Operator Mutation introduces random variation (diversification) into the population. Most genetic algorithms incorporate mutation operator mainly to avoid convergence to local optima in the population and recovering lost genetic materials. In the proposed HGAs, we have used the swap mutation. Figure 5 illustrates an example of this operator.

3.8. Local Improver Our local improvement procedure is based on an iterative neighborhood search (NS) so that within successive interchanges, given offspring is replaced with an elite (dominating) neighbor. We have used inversion operator as local improver. Figure 6 is an example of this operator.

3.9. Population Replacement Chromosomes for the next generation are selected from the enlarged population. After offspring were generated from GA operators (crossover and mutation) and then improved by the neighborhood search procedure, the improved offspring are added to the current population. This population is called the enlarged population, and then about 60 percent of the new population is filled out by the best and the fittest chromosomes of the enlarged population. Remaining chromosomes are selected randomly from the remainder chromosomes in the enlarged population.

3.10. Termination Criteria Termination criterion determines when GA will stop. In other words, the genetic operations are repeated until one of the termination conditions is met. In our implementation, we stop HGAs, if pre-determined number of generations, \(\text{max}_\text{gen} \), has been
4. DETERMINING UPPER BOUNDS ON k_i VALUES

In order to represent all possible and feasible values of each k_i multiplier, we determine an upper bound for each one. In our HGAs, we derive an upper bound on k_i through determining an upper bound on the objective value of each product i. Following steps describe how we can compute an upper bound for each k_i (k_i^{UB}):

Step 1. For each product i, assume $k_i = 1$ and calculate $\sum j \frac{d_j}{p_{ij}}$, arrange the products in ascending order of these values. Assign the products and sequence them to machines at all stages via FAM rule. Finally, find the corresponding common cycle solution and its objective function, TC_{cc}.

Step 2. Calculate the cost share of each product i, $TC_{cc}^i = TC_{cc} - \sum_{u=1,u \neq i}^n TC_{cc}^u$. As it had been mentioned by Yao, et al [15], we would have: $TC_{BP}^i \leq TC_{cc}^i$, where TC_{BP}^i is cost share of product i under basic period approach. So, TC_{BP}^i values must be determined.

Step 3. Assume there is only one product (say product i) with following objective function:

$$
TC_{BP}^i = \frac{m \sum_j sc_{ij}^i}{1} + k_i F \cdot \frac{h_i d_i}{2} \left(\frac{d_i}{p_{im}} \right) + \frac{k_i d_i^2}{2} \sum_{j=2}^m \frac{1}{p_{ij} p_{i,j-1}} + \sum_{j=2}^m h_{i,j-1} d_i (b_{ij} - b_{i,j-1}) - h_i d_i b_{im}.
$$

Obviously, to obtain the optimal solution, we have to determine the starting times so that minimize $\sum (b_{ij} - b_{i,j-1} - b_{im})$. Also, the smallest feasible value of $b_{ij} - b_{i,j-1}$ is equal to $k_i F \cdot d_i / p_{ij}$. Therefore, the best value of TC_{BP}^i is equal to:

$$
TC_{BP}^i = \frac{m \sum_j sc_{ij}^i}{1} + k_i F \cdot \frac{h_i d_i}{2} \left(\frac{d_i}{p_{im}} \right) + \frac{k_i d_i^2}{2} \sum_{j=2}^m \frac{1}{p_{ij} p_{i,j-1}} + \sum_{j=2}^m h_{i,j-1} d_i (b_{ij} - b_{i,j-1}) - h_i d_i b_{im}.
$$

Finally for a given value of F, we can derive an upper bound on v_i, ($k_i = 2^{v_i}$), denoted by v_i^{UB} by using following equations:

$$
TC_{BP}^i \leq TC_{cc}^i \Rightarrow \sum_{j=1}^m \frac{sc_{ij}^i}{1} + k_i F \cdot H_i \leq TC_{cc}^i
$$

$$
\Rightarrow k_i F^2 H_i - k_i F \cdot TC_{cc}^i + \sum_{j=1}^m sc_{ij}^i \leq 0 \Rightarrow \frac{TC_{cc}^i + \left(\frac{TC_{cc}^i}{1} \right)^2 - 4H_i \left(\sum_{j=1}^m sc_{ij}^i \right)}{2H_i F_{min}}
$$

$$
v_i^{UB} = \log_2 \left[\frac{TC_{cc}^i + \left(\frac{TC_{cc}^i}{1} \right)^2 - 4H_i \left(\sum_{j=1}^m sc_{ij}^i \right)}{2H_i F_{min}} \right].
$$

Where

$$
H_i = \frac{h_i d_i}{2} \left(\frac{d_i}{p_{im}} \right) + \sum_{j=2}^m \frac{1}{p_{ij} p_{i,j-1}} + \sum_{j=2}^m h_{i,j-1} \left(\frac{1}{p_{ij}} + \frac{1}{p_{i,j-1}} \right).
$$
Moreover, to determine the minimum value of F, F_{min}, assume that F must be large enough so that at least one product with $k_i = 1$, can be produced during it. Consequently, F_{min} is obtained from the following equation:

$$\begin{align*}
\text{max} & \left\{ \left(\sum_{i=1}^{\mathcal{m}} s_{ij} + \sum_{j=1}^{\mathcal{m}} \frac{d_{ij}}{p_{ij}} \right) \right\} \leq F \\
\Rightarrow F & \geq \text{max} \left\{ \left(\sum_{i=1}^{\mathcal{m}} s_{ij} \right) / \left(1 - \sum_{j=1}^{\mathcal{m}} d_{ij} / p_{ij} \right) \right\}.
\end{align*}$$

5. FEASIBILITY TEST AND REPAIR PROCEDURE

For a given chromosome and related k_i, σ_k and $\sigma_{kk'}$ vectors, a simple test for capacity feasibility can be carried out. To do so, the process completion times of products for all H basic periods are first calculated. We can use the following procedure for doing so.

Then, if at least at one basic period, the related completion time would be greater than or equal to 1, the corresponding chromosome is infeasible and otherwise, it is feasible. In other words, if at least one of the f_{tk} values, $k = 1, \ldots, H$, be greater than or equal to 1, this solution would be infeasible.

For converting an infeasible solution to a feasible one, we have also proposed following iterative repair procedure based on k_i values modifications.

Step 1. Choose the basic period with maximal value of f_{tk}, e.g. basic period k_1.

Step 2. Among the products of basic period k_1, select the product with maximum amount of process time ($\max \{ \sum_{j=1}^{\mathcal{m}} d_{ij} / p_{ij}; i \in \sigma_{k_1} \}$), e.g. product i.

Step 3. If $v_i \neq 0$; set $v_i = v_i -1$, and obtain σ_k and $\sigma_{kk'}$ vectors for this new set of multiples. If this solution is feasible, stop, otherwise go to step 1. If $v_i = 0$; select the product with subsequent maximum amount of process time and go to step 3.

It is noteworthy that each chromosome obtained via genetic operators (crossover, mutation and local improver) is checked with aforementioned feasibility test.

6. COMPUTATIONAL EXPERIMENTS

To verify the efficiency of the proposed algorithm, in terms of the solution quality and the required computation time, some numerical experiments have been conducted. In this regard, all of the experimental tests have been implemented on a personal computer with an Intel Pentium IV 1800 MHz CPU and HGA has been coded with MATLAB 6.5. Moreover, to solve the mixed zero-one non-linear models, LINGO 6.0 optimization software has been used. It should be mentioned that the main motivation of authors to conduct this research work is that the problem has been inspired from a real industrial case where a supplier, based on a mid-term contract (at most up to one year planning horizon), produces 3 types of products for an automotive manufacturer company. Supplier’s production facility is a 5-stage FFL in which the drilling, cutting and pressing work centers have 2 parallel machines for processing the WIP parts. Some types of products need not to pass some stages. Because the master production plan of the automotive manufacturer is almost constant, then the supplier could assume a continuous and constant demand rates during the planning horizon.
However, because of the confidentiality as well as the lack of some required data, we decided to generate random problem instances.

6.1. Parameter Setting and Data Set
The tuned parameters of the HGA after some initial tests have been adjusted as: population size pop_size = n, maximum number of generations max_gen = m×n, maximum number of generations without improvement max_nonimprove = n, crossover probability Pc = 0.8, mutation probability Pm = 0.2, and tournament selection parameter φ = 0.7.

Furthermore, the parameters of each problem instance have been randomly generated from the following uniform distributions:

\[d_i \sim U(100,1000), \quad p_{ij} \sim U(5000,15000), \]
\[s_{ij} \sim U(0.01,0.025), \quad h_{il} \sim U(1,10), \]
\[A \sim U(10000,20000). \]

Because processing at each stage has a value added on products, \(h_{ij} \) values should be non-decreasing with \(j \). So, after random generation of \(h_{ij} \) for each product \(i \), other associated \(h_{ij} \) values are determined by randomly generating incremental additions i.e. \(h_{ij} = h_{ij-1} + U(1,3) \). Also, there could be a correlation between \(s_{ij} \) and \(s_{ij} \) values. Therefore, for each randomly generated \(s_{ij} \), its corresponding \(s_{ij} \) parameter has been computed using the following equation: \(s_{ij} = 15000 \times s_{ij} + 1000 \times U(0,1) \).

6.2. Performance Evaluation
To verify efficiency of proposed solution method, we have considered eight different problem sizes. For each problem size, 20 problem instances have been randomly generated. Also, we have divided our problem instances in two parts: problem instances with 4 and 5 products, and 2 and 3 stages (as the small-sized problems), and problem instances with 5 and 10 products and 5 and 10 stages (as the medium and large-sized problems). For small size problems, the solutions of HGA have been compared with the solution of LINGO software. Also, for medium and large-sized problems, we have calculated an index \(\lambda \) by the equation and used it as a base of comparisons. In index \(\lambda \), the TC is the total cost of a problem instance obtained by each algorithm and LB is the associated lower bound.

To calculate the LB, we must obtain minimum value of the following equation:

\[
Z = \frac{A}{F} + \frac{n}{\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{sc_{ij}}{k_i}} + \frac{n}{\sum_{i=1}^{n} \frac{h_{i,j-1,k_i}d_i^2}{2p_{ij}^2} \left(3 - \frac{d_i}{p_{ij}^2} \right) + \sum_{j=2}^{m} h_{i,j-1,k_i}d_i^2 \left(1 + \frac{1}{p_{ij}} \right) \frac{1}{p_{ij}^2} - \sum_{j=1}^{m} h_{i,j,k_i}d_i \cdot b_{im}}
\]

If we assign to \(b_{ij} \) the values that minimize \((b_{ij} - b_{ij-1}) \), then the above equation is minimized. According to constraints 2, the minimum possible amounts of \((b_{ij} - b_{ij-1}) \) are \(d_kF/p_{ij} \). Also, if products can be scheduled as soon as possible, we can substitute \(b_{im} \) with \(\sum_{j=1}^{m} d_kF/p_{ij} \). Therefore, a good lower bound can be computed as follows:
Table 1 represents the computational results for the small sized problem instances and Table 2 and 3 gives these results for medium and large sized problem instances.

TABLE 1. Results of Small-Sized Test Problems.

<table>
<thead>
<tr>
<th>Problem Size (n×m)</th>
<th>Number of Times That the PTHGA’s Solution Was Better Than the LINGO’s Solution</th>
<th>The Average of Percentage Decrease in PTHGA’s Solution Compared to LINGO's Solution (%)</th>
<th>Average CPU Time for LINGO (In Seconds)</th>
<th>Average CPU Time for PTHGA (In Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 × 2</td>
<td>17</td>
<td>3.44</td>
<td>2736.98</td>
<td>34.43</td>
</tr>
<tr>
<td>4 × 3</td>
<td>16</td>
<td>5.05</td>
<td>5684.45</td>
<td>53.47</td>
</tr>
<tr>
<td>5 × 2</td>
<td>16</td>
<td>5.35</td>
<td>5770.77</td>
<td>54.69</td>
</tr>
<tr>
<td>5 × 3</td>
<td>18</td>
<td>9.07</td>
<td>9737.29</td>
<td>133.65</td>
</tr>
</tbody>
</table>

TABLE 2. Results of Medium and Large-Sized Test Problems (Comparison with LB).

<table>
<thead>
<tr>
<th>Problem Size (n×m)</th>
<th>The Average Performance Ratio of PTHGA (%)</th>
<th>The Average CPU Time of PTHGA (In Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 × 5</td>
<td>10.26</td>
<td>149.34</td>
</tr>
<tr>
<td>5 × 10</td>
<td>18.86</td>
<td>787.66</td>
</tr>
<tr>
<td>10 × 5</td>
<td>16.4</td>
<td>1825.9</td>
</tr>
<tr>
<td>10 × 10</td>
<td>23.63</td>
<td>2126.58</td>
</tr>
</tbody>
</table>

TABLE 3. Results of Medium and Large Size Test Problems (Comparison with the Common Cycle Approach).

<table>
<thead>
<tr>
<th>Problem Size (n×m)</th>
<th>The Average Improvement in PTHGA's Solution Compare to Common Cycle Approach (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 × 5</td>
<td>9.76</td>
</tr>
<tr>
<td>5 × 10</td>
<td>6.49</td>
</tr>
<tr>
<td>10 × 5</td>
<td>8.35</td>
</tr>
<tr>
<td>10 × 10</td>
<td>6.82</td>
</tr>
</tbody>
</table>
In summary, we find out the following results from our numerical experiments:

- In Table 1, solution qualities of the proposed algorithm have been compared with the related optimal solution obtained via LINGO 6.0. As we can see, for the small size problem instances, the solutions of the PT-HGA are 67 times better than the solutions of LINGO. It seems that having a mixed zero-one and nonlinear nature of the proposed mathematical model makes the LINGO can not obtain good results. Also, in average, the solutions qualities obtained by the PT-HGA are 4.3 percent better than the solutions of LINGO. Totally, the results shown in Table 1 indicate superiority of the proposed algorithm with respect to both CPU time and solution quality in compare to solutions of the LINGO.

- For the medium and large-sized problem instances, performance ratio λ has been calculated and used as a measure to evaluate the proposed algorithms. In Table 2, we have calculated the performance of the proposed algorithm. We observe that the average performance ratio for the problem instances increases when the problem size increases. However, this increase can be either due to an increase in the difference between the lower bound and the corresponding optimal cost, or due to reduction of effectiveness (performance) of the proposed algorithms due to increase in corresponding solution space.

- Table 3 reports the average cost differences between the solutions obtained through proposed algorithm and the solutions of common cycle approach. These results reveal the average improvement of 7.85 percent in solutions of the PT-HGA over the common cycle's solutions, respectively. Totally, these results indicate superiority of applying the basic period policy versus common cycle approach in the problem.

7. CONCLUSION REMARKS

In this paper, the basic period approach has been applied to solve the economic lot and delivery-scheduling problem in flexible flow lines over a finite planning horizon. To do so, a new mixed zero-one nonlinear model has been developed to optimally solve the problem. Providing an optimal solution is not a practical approach for routine decision-making in case of the medium and large-sized problems. Thus, an efficient meta-heuristic (PT-HGA) based on power-of-two policy, of basic period approach has been developed.

Since there is no other solution method for the problem, we have compared the solutions of PT-HGA with the LINGO solution software in small-sized problems. Also, for medium and large-sized problems, we have calculated an index λ which calculates the distance of solutions obtained by PT-HGA from a lower bound. Computational results are very promising and indicate the superiority of PT-HGA over the common cycle approach with respect to the solution quality.

8. ACKNOWLEDGEMENT

This study was supported by the University of Tehran under the research grant No. 8109920/1/01. The authors are grateful for this financial support.

9. REFERENCES

