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Abstract The vertical and rocking impedances of a rigid foundation resting on a scmi-infinite
transversely isotropic medium are obtained in the frequency domain. In the present approach, the
contact pressure distribution on the soil foundation-interface is approximated by a linear combination
of known pressure patterns. It is shown herein that the approximate solutions of spatial displacement
distributions satisfy quite well the boundary conditions for this mixed boundary problem.
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L INTRODUCTION

Many researchers have extensively studied various
probiems related to wave propagation due to
concentrated and/or distributed loadings on the
surface of elastic half-space. When a load is
applied through a rigid circular disk to the
medium, the problem is rigorously described in
terms of dual integral equations. Reissner and
Sagoci [1] solved the torsional motion of a rigid
foundation by describing the problem in the oblate
spherical coordinates. Amold et. al. [2] obtained an
approximate solution by tentatively assuming that
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the dynamic contact stress distribution is about
identical to the static distribution pattern. This
assumption has been taken by a number of
researchers including Bycroft [3] for instance.
Awoboji and Grootenhuis [4] solved the rigorous
vertical and torsional motions of a circular rigid
body as well as vertical and rocking motions of a
rigid strip foundation on a semi infinite half-space.
Gladwell [5] showed that the dual integral equation
describing the problem is reduced to the second
kind of Fredholm integral equation by using
MNable’s method [6]. He solved the Fredholm
equation by using a numerical method.
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As for an isotropic material, however, quite a
few studies have been conducted. They include the
works by Fabrikant [7] and Hanson [8]. Fabricant
[7] studied the elastic field caused by a rigid flat
punch in normal and rotational directions to the
material surface. Hanson studied the same problem
taking into account the effect of shear traction.

In this paper, the vertical and rocking impedances
of a rigid circular foundation resting on a semi-
infinite transversely isotropic medium are obtained
in the frequency domain. In the present approach,
the normal contact pressure distribution on the
soil-foundation interface is approximated by a
linear combination of known pressure patterns,

2. STATEMENT OF THE FROBLEM

By ignoring body forces, the time-harmonic goveming
cquations of a three-dimensional elastic medium
are written in the following form as:

Callyy = -pw’u,. (i=1,2,3) (1)

where C,,,p, ® and wu, are the elasticity
coefficients, mass density, circular frequency and
displacement components in x, (i=1,2.3) direction,
respectively, and comma (,) denotes differential
operator with respect to spatial coordinate.

In a transversely isotropic material C, is

reduced to the following five elastic constants:

a""ﬁ,, :C”_]l“.' ‘ﬂ‘u =C]|::! ‘qslzcﬂllﬂ (2)
5= Chny Au=Chn

and

ﬂm=2(-ﬂ"u _Alz) (3)

Since the strain energy stored up within the
material must be positive, the coefficient tensor

| should also be positive. This condition calls
for;
A, > Ay (A, +AL A, >24A]

1~ azfe 11 12 13+

)
Ay >0

The authors have uncoupled the equations of
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motion, and obtained the rigorous solutions of both
vertical displacement u_and the stress o _ due to

vertical harmonic force applied to the surface of a
transversely isotropic half space. In their approach,
Fourier series and Hankel transform were utilized
in respective circumferential and radial directions.
The solutions are as follows:
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s 3 e (7)
cl—u.]u.3+pﬂ:u c |[1+al}| atuz

c=ala, tpe -5+ a,)+aia, (8]

Ji (a)
\/—_

M, p ()
and S and S are the roots of the following
cquation:

ALALS H(AL+2AA0S +A A, =0 (10)
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In Equations 5 and 6, J_ (¢r) is the first kind

]

Bessel function of the mth order, p. is the mth

order Hankel transform of p_ (r) and g(g) is
given as:

2

4 g
gtq}=[c12u3 Fpge” Tl )+ag *13J

' 2 2 i3
[’-‘i(“s‘“‘n‘;z '*'Aaz[pn"‘ ~5 ':‘“H:'D*“z“; *“33]
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. 4 I 2 2 D 3 ]
[‘12(‘13-*]3& +A33 P g {l+|1[} +u2u2ﬁ.33

(11)

The term p_, () is the mth term of the Fourier

series of the load p.(r.0) with respect to
circumferential direction, Rayleigh pole is the root
of equation g{g) = 0.

When a rigid circular foundation of radius R is
concerned, contact pressure distribution p_(r,6)
is unknown. [gnoring the friction between the
foundation and the medium, the boundary
conditions of rigid foundation subjected to vertical
motion of Aand rocking motion of ¢ are given as

(Figure 1):
w(r,0,0)= A
o, (r,8,0)=0

v, 0<r<R (12a)
¥0, r>R (12b)

and those for rocking motion of ¢ as:

u, (r,0,0)=rp
o (r,0,0)=0

w0, 0<r<R (13a)
ve, r>R (13b)

respectively. Substituting Equations 5 and 6 into

Equations 12 and 13 yields dual integral equations.
3. SOLUTION

We obtain the solutions of the dual integral

Equations 12 and 13 by making an N-dimensional
function space and expressing the normal contact
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M = M,e™
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Figure 1. Configuration of the Problem (a) Vertical
Motion and (b) Rocking Motion.

pressure distribution in this space. The solution for
vertical and rocking motions are to be introduced
separately.

3.1 Vertical Motion of the Foundation As
for the wertical motion of the foundation all
variables are independent of circumferential
coordinate, and the load function can be expressed
by the following functional expansion function
space [9]:

p.(n =1z e (14)
0 r=R

where f,(r})(j=12,.) are basic functions
which are determined by:

p+l rY d
fy(r) = W{"[E” i (15)

0 r= R
with p=] }
HE=1 7

In Equation 14, ¢, is the coordinate of

function p, in the jth basic and i1s a complex

number in the frequency domain. Since the basic
functions satisfy

;}rfj (£)dr =2_17: (16)

the total foree acting on the surface of the half-
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space is given by:

F =

M=

o (17)

]
The contact pressure distribution p_ is axi-

symmetric and this condition calls for m=0 in
Equations 5 and 6. Thus, the necessary procedure
is eventually to obtain the zeroth order Hankel

transform of f '}.{rj :

f‘,:,_p-rll‘“f‘l[]:w]}l

: ] ..(gR 18
- R ER) (18)

where ' is the Gamma [unction.
Substituting Equation 18 in Equation 5, the
displacement u_(r,z) can be expressed as:

u,(r,z) :iﬂ;muw{r,z} (19)
where
um.(r.z} =

Tel(pes v ap] e —csels

x rl _-—ajz
R, B ] :]

aj[cla’fc'“*
(20)

{_P_J’ 12°C(p+1)

J (R
xRy

ﬁ’;‘"—}dg j=12,...N
g(g)

Since the foundation is rigid, u(r,0) must be equal
to A over the entire extent of the foundation-
medium interface. In this paper, approximation is
made in a four-dimensional function space i.e.

N=4. N (= 4) unknown constant «,(j=12,3,4)
are determined in such a way that the constants
o, allows the approximate expression of
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u_(r,z)described in Equation 19 to best fit its
rigorous value Awithin the contact area. Thus,

four points (, =0.1R,0.4R,0.7R and 1.0R) are

taken within the contact area, and total N=4
{(Equation 19} at these particular points eventually
make up a set of N simultancous equations:

=4A
ZD',IHH{I 2

(k=1234)

Solving the simultancous Equation 21, the
constants o are obtained. With all « , Equation
17 gives total force applied to the foundation and

the impedance function K, is obtained as:

wE

F
K==t 22
i )

3.2 Rocking Motion of the Foundation In
this case, p,(r,0) can be written in the following
form as:

3 (1,0 r=R
p,(r.0)= EB‘E’( } (23)
0 r=R

where [}, is the coordinate of functionp, in the jth
basic and g;(r,0)(j=1,2,...) are the basis of the N-

dimensional function space expressed as [10]:

2(p+ |](p+2} 4 ]_[L]z P i
nR* R

gj(f]Z-: y F.‘;R

0 r>R

(24)
: o1
th p=j——.
wilh p=J 5

This inversely symmetric problem of contact
pressure distribution calls for m=1 in Equations 3
and 6, the functions p_(r) and p.(g) are
respectively given as:
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N +1(p+2) A
e EGIRE
0 r>R
(25)
ey p 2e+1D(p+2) 2°T'(p +1]
P‘m{g)—ﬁj R (CR)™ pq!{ R} (26)

Substituting Equation 26 into Equation 5, the
displacement u_(r,0, z) is expressed as:

u,(r.0,z)= ZﬂJu,d{r,z)uusﬂ (27)
where
u,.(r,z)=
le‘/-:{ [pnf'-'li = r;z(l + I.')'.]}][c1c"“'1‘ _Cze-uiz]+
[}
U‘i I:c:u;:c_u}r _Czﬂ-:iﬂﬂéz] } (23}
(p+1)(p+2) 2"'T(p+]
e 2 2ExDs 6

R (cR)™

1@ 5212,
g(g)

Since the foundation is rigid, the derivative of
the displacement u_, with respect to the radial

du,(r,0,0)
or

coordinate, (leg= ) should be equal

to one at any point on the foundation-medium
interface. For this motion, the same as that of
vertical direction, using a four-dimensional
function space and choosing four points
(r, =0.1R, 04R, 0.7R and 1.0R) on the foundation-
medium interface, the four unknown coefficients
B,(1=1,2,3,4) are given by solving the system of

the algebraic equations as;

_‘iﬁ,m,-(ru.ﬂ}ﬂ (k=1,2,3,4) (29)
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where

au, (x,,0)

@;(r,0)=—= o (k=123,4) (30)

In the case of rigid foundation, the system of
Equations 29 is exactly equal to the following
equations:

ﬁﬂjuﬁ_j{rk,ﬂ}= T (k=1,234 @1

=l

Since @(r,0)=1 at any point on the foundation-

medium interface, the impedance function, K ogs 18

given as;
M
Ko = E =M (32)

where M is equal to the total bending moment
which is given by:

Rlx
M= [[(rcos®)p,(r,0)rdbdr=
a4 a

?T B 2m+ilp+2}
0 o i=l J ER
2| P
[1—(L] ] cos® Bdodr
R
ar
M =3, (33)

=l

For obtaining Equation 33, the following expression
has been used:

HE[[J+1}(;3+2} [ [E]]coszi}dﬁdrﬂ (34)

Substituting Equation 33 into Equation 32, K__ is
expressed as:

.=

L

i ==

B, (35)
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TABLE 1. Material Constants.

A A A A N
Material e — i 22 Ay %107 :
Ay Ay Ay Ay et
Isotropic 3.00 1.00 1.00 3.00 1.00
Layered soil 211 0.43 0.47 2.58 . 1.40
| Beryl rock 4.13 1.47 1.01 3.62 | 1.00

TABLE 2. Comparison of the Results of This Study with
that of Luco and Mita [11].

Vertical impedance function Re(k..)
Present study 6.03
Luco and Mita (1987) 5.97

Same as the case of vertical excitation, the inverse
of this impedance function is as:

E =

1
= 36
- K. (36)

where F,, is the flexibility function for rocking
motion of the foundation,

4., NUMERICAL RESULTS

In the previous section, by using a four-dimensional
function space, the vertical displacement «, and the
impedance functions K, and K_ have been

expressed in terms of four complex coefficients for
vertical and rocking motions, separately. In this
section the numerical evaluation of the displacement
and then the impedance functions are given. For
this purpose, three kinds of transversely isotropic
materials as well as isotropic one considered.
These four materials are (1) isotropic medium, (2)
limestone/sandstone layered soil and (3) Beryl rock
(Ragapakse and Wang, 1993). The Poisson’s ratio
of the isotropic material is equal to 0.25 and the
mechanical properties of the materials are listed in
Table 1.

For numerical evaluation, the dimensionless

a,=Ro ﬁi, real part of

66

frequency

6 - Vol. 15, No. 1, February 2002

impedance function Re(k;) = Re(K;)/As and
imaginary parts of impedance function Im(k;) =
I KW e (1= z.0) are introduced.

By solving the algebraic Equations 21, the
coefficients ¢ (j=1,2,3.4) are obtained. Putting «;
in Equation 22, the impedance function k. is
obtained.

In order to provide a proper perspective on the
accuracy of the present method, the impedance of
the disk for vertical motion is first obtained setting
oy at 0.1, and compared in Table 2 with the
rigorous solution by previous authors. Only 1%
error validates the present approximation.

Figures 2 to 4 show the spatial variation of
vertical displacements u, of the four materials with
respect to the radial distance /R for different
values of dimensionless frequency a; = (0.1, 1.0 and
3.0, respectively. In general, outwardly propagating
waves exhibits less atlenuation with increasing
frequency. Among the waves through these three
materials, the wave traveling away through the
isotropic medium is the least attenuated in the
higher frequency range a; = 3.0. Figures 5 to 7
show the wvariations of vertical displacements u,
with the depth zZ/R for the different frequencies. In
these figures also, amplitudes of the waves are less
decrecased with increasing depth as the frequencies
increase. However, differing from Figure 5, the
wave traveling down through the isotropic medium
(Figure 7, a; = 3.0) exhibits a sharp rise of its
amplitude shortly bencath the disk, and as the
wave propagates further down, its amplitude is
reduced faster than that of other waves through the
transversely isotropic materials. This fact indicates
that transversely isotropic features of the material
affect the directivity of the waves through a
material.

Figures 8 to 10 show the spatial variations of
displacements u, due to the rocking motion of the

1JE Transactions A: Basics
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Figure 2. Vertical displacements versus radial distance due to
vertical excitalion (2,=0.1). The imaginary parts are equal to
Zero,
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Figure 3. Vertical displacements versus radial distance due to
vertical excitation (gy= 1.0).

15 1 = =
[ | =—— lsoiropigRe) —=—Isoiropiglm) .
; —— LayerediRe) —=—Layoredm) |
1.0 4 ——BendRe}  ——Baryl{lm)

| —— E-«_::c_nE'_l:Ra] e E=COrmIm)

Displacemeont
[
h

0.0 +

-0.5

Figure 4. Vertical displacements versus radial distance due to
vertical excitation (8= 3.0).
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Figure 5. Vertical displacements versus depth due to vertical
excitation (g,= 0.1). The imaginary parts are equal to zero,
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excitation (ay= 1.00.
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Figure 7. Vertical displacements versus depth due to vertical
excitation {a;= 3.0},
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Figure 9, Verlical displacements versus radial distance due to
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Figure 10. Vertical displacements versus radial distance due
to rocking excitation (a,= 3.0).
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Figure 12. Real and imaginary parts of rocking impedance
function versus .

disk. In these figures, displacements are plotted
with /R whose orientation is taken normal to the
axis of rocking,

Figures 11 and 12 show the variation on frequency
of the non-dimensional impedance functions k. and
kg, respectively., The real parts of the wvertical
impedances k., are about constant over the
frequency range in Figure 11, whereas their
imaginary parts increase almost linearly with
frequency; the facts indicates that any impedance
function in this figure would be well approximated
by a simple Voigt model with a linear spring and a
dashpot arranged in parallel, Figure 12 shows that
the imaginary parts are noticeably smaller than
those in Figure 11, indicating that the material-disk
systems are less damped for their rocking motions.
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5. CONCLUSION

The vertical and rocking impedances of a rigid
foundation resting on a semi-infinite transversely
1sotropic medium were obtained in the frequency
domain. In the present approach, the pressure
distribution on the soil-foundation interface was
approximated by a linear combination of known
pressure patterns. In order to provide a proper
perspective on the accuracy of the present method,
the impedance of the disk on an isotropic half
space was first obtained, and compared with the
rigorous solution of previous authors. The solution
obtained was in good agreements with the rigorous
solution, demonstrating the accuracy of the
solution by the present approach. Real parts of the
vertical impedances k_, of disk on different

transversely isotropic media are all about constant
over a wide non-dimensional frequency range,
whercas their imaginary parts increase almost
linearly with frequency. The fact indicates that any
impedance function would be well approximated
by a simple Voigt model with a linear spring and a
dashpot arranged in parallel. On the other hand, the
imaginary parts of the rocking impedances k., for
these materials are noticeably small when compared
with those of k_, indicating that the rocking
motions of the disks are less damped than their
vertical motions.
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