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Abstract In the present work, the solidification process was simulated in both macroscopic and
microscopic scales. Two-dimensional heat transfer equation for conduction was applied for
macroscopic modelling using enthalpy formulation and finite element method. In order to
decrease execution time and/or memory capacity in finite element analysis, skyline mathematical
technique was adapted. The microenthalpy method using kinetic equations for microstructure
formation was used for microscopic modelling. This macro-micromodelling is able to represent
transient thermal field of the system, the enthalpy and solid fraction distributions, and different
aspects of microstructure: grain density, size, eutectic interlamellar and dendrite arm spacings. A
good agreement was found between our numerical data with some experimental results from
several research sources.
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INTRODUCTION

In recent years, heat transfer problems with
phase change for solidification modelling has
received “much attentions. Due to the
ditficulties for the formulation of the above
process, certain points should be taken into
account throughly and analysed preciesely for
a successfull modelling. These considerations
are: the presence of transient phase change,
media interfaces, different ways of 3-D heat
transfers, and thermo-physical properties of
different domains.
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In spite of these difficulties, many attempts
have been made in this direction in different
ways: (1) macromodelling of heat transfer and
fluidd flow during mold filling and stress
distribution accompaning solidification, and (2)
micromodelling of solidification kinetics and
fluid flow in the mushy zone. At macroscopic
level, energy, mass, momentum and/or solute
continuity equations have been used to
calculate temperature field, mold filling,
convection in the liquid, and macrosegregation.

The early work in this field was by Murray and
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Landis [1] in 1959. In this field, a simple model
is considered for applying phase change in the
equation system. However, this model can not
predict the microstructural and metallurgical
aspects of solidification. In 1966 Oldfield (2]
applied the microstructural rules to the
continuity equation of energy for microstructure
evolution of gray cast iron. The goal of
micromodelling of solidification is to obtain an
appropriate solid fraction model that can be
subsequently introduced into macroscopic heat
flow calculations. This relates the solidification
condition to  undercoolings and  to
microstructural features [3]. However, due to
the complexity of the process, it was not until
1984 that several research projects have been
initiated 1 this field [3-12].

FORMULATION OF THE PRESENT
ANALYSIS

In this work, the solidification of eutectic alloys
was analysed in  both macroscopic and
microscopic levels.

"Macroscopic Model"

A. Governing Equation

In general, conservation equation of the energy
represents the accumulation rate of the energy
which is the result of conduction, convection or
radiation of heat, heat generation of chemical
reaction or phase change, tluid flow and/or the
mechanical work as a result of phase change.
Mathematical expression of this equation for a

dependent variable ¢ is as follows:

:—T [/xﬁ(r,r)J +v. [pu (r,f).¢(rﬂ)} _

v. {k (r,r)Vqﬁ(l’,r)} Q (1)

(Definition of the symbols is listed in the
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nomenclature).

Therefore, at  macroscopic  level,  the

solidification process of metals is controlled by

heat diftusion and convection in the liquid

[3,13]. The tollowing assumptions were applicd

for present macroscopic model [14-16]:

(D) Solidification begins with initial uniform
temperature distribution.

(2)Heat transter is only by conduction.

(3)Heat transfer by conduction is considered in
2-D system.

(4)Thermo-physical properties in any medium is
constant (see Table 1) and this domain is
isotropic.

(5)No air gap formation exists in metal/mold
interface.

At the present analysis, the enthalpy
formulation was conducted and enthalpy
function was defined as follows:

H(T) = JOTCP(T')dT' CL[1-£5(1)] @)

With the above mentioned assumptions,
Equation 1 is converted to a cartesian

two-dimensional space:

aH s s Ty o o T
For solving Equation 3, we apply different
initial and boundary conditions as follows:

T(r,0)=Ty(r) , ree @
T(r]- ,T):T(Ii,r) , L.ery (5)
_k% (ri,f) = qSB(ri ,'5) , riEFZ (6)’

o' T
-k (0) = he(T (1) -Tac)  fery (7
T —
2 (1) = he (1,T) [T (13)-Tar | » 1er
®
where h, is equivalent radiative heat transfer

-k
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coetticient and is given by:

o 2 2

h ¥ (ri,T(r) ): éBU(T (ri,r)+Tar) (T(}Ti,r)+Tar)
)

The finite element method was used for solving

Equaiton 3 [17].

B. Finite Element Model

For spatial discretization of the considered
domain, three-node triangular elements were
used and the governing differential equation
was solved by Galerkin weighted residual
method. The approximation of variables T and
H over the element ¢¢ was done by the

tollowing tunction:

3
T _Zle (xy). T ) (10)
]:

[\/]w

sz le(x,y)-H]-%) (1)
1

Finally, the finite element model of Equation 3

If

1s as follows:

e (1) KT = (Y a2
where [Mc} , [Kc] and {F‘:} are mass and
stiffness matrices and load vector, respectively.

The form of the matrix elements and vectors

are:
Mij:J C,)Nl.eNjeth(ily (13)
Q
aN? f’N; sN? "’N;
¢ b

c ¢ < < 3
Jre {thi Njf“ +egoN; (Nj T Nﬂ tdr (14)

Ff - J Nf (-qgp)tdr+ J ehCNieTactdn

e
Iy Ty

J' sBoNie Tgr tdr
s

(15)
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Applying constant temperature  boundary
condition (Dirichlet) in equation system is
different from that ot other boundary conditions
(Neumman). The former is applied directly to
equation system. For calculating M,j ,Kij and
F f over each element, we need an
appropriate integration method. In the case of
simple shape and regular element, this
integration can be done analytically. However,
in the case of irregular elements, a numerical
method as well as isoparametric transformation
technique should be used.

The discretization of the time derivative in
Equation 12 is most often achieved with a finite
difference method. At the present work, we
used one step O-method for time stepping
scheme. According to this method, the basic
variable of equation system (i.e. enthalpy) is

approximated as follows:

CHY ™ — CED "+ [9 {H -6 {H}J
(16)

where 0<fl<1 and label n on the variables
indicates the time stage. For 6=0, or explicit
scheme, an unknown variable can be calculated
directly. However, in order to secure the
stability, time step should be small. For =1, or
implicit scheme, time step can be larger, but this
method requires iterative solution scheme. For
solidification problems, the implicit scheme as
well as lumping of mass matrix is an appropriate
method [18]. In this condition, the stability of
the solution method is secured. This also
prevents the oscillations in the temperature
field in the neighbourhood of a freezing front.

By applying the time steping scheme, we obtain:
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IME] (Y e [KO] {TO) =
[ME] ()" ~(1-0)ar [K°] {TE}"
selo {FP " +(1-0) {F}™) (17

Here, since specific heat does not appear
explicitly, the mass matrix is constant. However,
for the stiffness matrix inconsistency as a result
of presence of radiative boundary condition in
the system, K and F should be recalculate at
each time step. As can be seen in Equation 17,
in the case of 0>0, the presence of both
enthalpy and temperature introduces a
nonlinearity (because both are unknown). At
the present work, for solving the nonlinear
Equation 17, the Newton-Raphson method is

used. By handling this method, we obtain:
{T } n+l
o {HY
[V (YT e [ {17
(M) {(H Y -(1-0)a7 [K] (T}
Ar(O{FY T e1-0) {F}") (18

[Me} +0A7 [ A{oH} =

where:

={H} - {7} (19)
Here, [ {T } /s {H H is called jacobian
matrix in time | and sth

iteration  (i.e. [J ];Hl ). For reducing the
required calculation time, [J 1"
instead of [J ]’Hl (i.e. moditied Newton-Raphson
method). With =1, Equation 18 becomes in
symbolic form as follows:

[’Mﬂ e [K‘j H{Te} "

AH},
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can be used

{aH}

e eyn+1 en e
— ] [ Y] o [
{Te}?” A {Fe};“l (20)

In the above equation, since all terms in time

and 7»+1 with sth iteration are known, we can
5 €
simplycalculate {H }
S+
linear equation system, we use both inversion

. .Forsolvingtheresulting

matrix and LU techniques.

All the above presented equations are valid
for a typical element of the domain. So, for any
mesh, the element equations are assembled and
the boundary conditions are applied to them. In
each time step, calculations continue iteratively
until {AH} is smaller than a present error
tolerance, €. This criterion can be
represented as a root-mean-square value of the
normalized error in the global nodal values as

follows:
(elyT (ol |2
wmm

where ¢ 1s a selected relative error.

(21)

In spite of high accuracy of the enthalpy
method, the consuming time for calculations is
relatively high. At the present analysis, in order
to decrease the execution time of calculations,
the resulting equation system was solved by
skyline technique {17].

"Microscopic Model”

A. Introduction

In the present work, metallurgical equations of

the microstructure formation for eutectic alloys

were coupled with macroscopic enthalpy model

using microenthalpy method [3]. The following

assumptions have been considered:

(1) The continuous nucleation mechanism is
taken into account.

(2) In any nuclei, once nucleated, the grain
remains in fixed position, i.e., fluid flow and
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convection are not considered. ‘
(3) Grain growth continues to the end of

solidification process, and coalescence and

dissolution of existing grains are not
considered.

(4) Grains are spherical and their shape remain
unchanged  during solidification  until
impingement.

(5) An average grain radius is used for
calculations at each time step.

With these simplifications, one has to
calculate real solid fraction of each element via
an energy balance, which predicts correct
temperature as well as microstructural aspects
of the casting.

B. Nucleation Model
Considering many different sites present in
liquid for nucleation and existence of
undercoolings in these regions, a continuous
nucleation model was considered. In this model,
grain density is a function of cooling rate of
which the wvalue is calculated from instant
undercooling. For this reason, a statistical model
based on Gaussian distribution function was
used [3] as tollows:

ONT) _ N | (eT-oTo)”

_max (22)
daT)  oTol2n 2(sT,)’

Therefore, at any undercooling AT(fo) , grain
density can be calculated from:

N(aT(y))=N Nimax

min " ATUE ’
AT () To AT
J exp'—(—A—Z:;—)— d(aT(x))
0 L 2(aTo) (23)

where Niax , 215,47 T, should be presented for

Intermational Journal of Engineering

any alloy from the experiment and

Npax 18 the minimum grain  density
of nuclei in the initial melt. The values used in
the present analysis are presented in Table 2.
This means that by using this model one can
calculate the grain density for each element at

any time 7 .

C. Growth Model

In order to calculate the average grain size of
each element, one has to use an appropriate
growth model. For equiaxed growth mechanism
of eutectic alloys, we can apply, with good
approximation, the direct relationship between
growth rate and square of the bulk
undercooling (i.e. growth by screw dislocations)
[3,19,20]. Therefore, we have;

1/2 20,7 ()
o(c) :ﬂ(ldrg_ / ) _I_)lL_(Arl:( ))_ (24)

2 4o Tk Vs

or in a simpler form:

(o) = %ﬂ :#-(AT(T))2:#- [TE‘T(”)JQ (25)
where u 1s the growth constant which should be
calculated for any alloy. In the present work due
to the lack of data, the value of u for Al-12%Si
alloy was calculated from previous data for cast
iron using a computational method [21]. The
computed value of u is given in Table 2.
Integration of Equation 25 gives the grain size
in time 7o :

T

R{rg)=R, Jooﬂ. [Tp-16)]” (26)

Assuming that solid fraction remains unchanged
during nucleation stage, we can calculate the
real average grain size:

NG)-R}(e) =N(e-ae).R¥ e -ar) +aNRE - (27)
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with assumptions:

1 N&ot 3 1/3
— R =R 28
{N " (28)

{NMotj=1

Therefore, in the present work, the gram
density and the average grain size for evolution

of microstructure were applied.

D. Heat Balance
If grain density and grain size are known trom
nucleation and growth models, the solid fraction

at time r can be calculated from:
. 4 3, .

Although according to the above nucleation
model the grain density is updated at each time
step, its contribution, when deriving Equation
29 can be neglected. Therefore one has:

dt;(r) =N(t). 4HR2(T)'fi(T)' gIdﬂd

dt ()

dr (30)

Substituting unity for internal solid fraction

1R

3

(fi(r)) for eutectic alloy and wusing an
appropriate grain impingement function (e.g.
Johnson-Mehl approximation), the variation of
solid fraction in this system can be calculated.
Therefore a new and correct temperature is
obtained:

Qext i %.Ar :p.AH:/JCP.AT—pL.AfS(r) (3])

Here, for the stability of microstructural
calculations and for reducing computational
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time, we use a two time step procedure for
calculations of microscopic model. This leads to
a much finer time step, while remaining a fairly

large time step tor the macroscopic model.

COMPUTED RESULTS AND
VALIDATION

A. Solidification of Al-12%S1 Cylindrical
Casting in the Sand Mold

Figure 1 shows the system used by Kanetkar et
al. [12]. The selected area as well as boundary
conditions are represented in Figure 2. The
present analysis was done for this system, using
macro time step and relative error of 0.1 (sec)
and 0.01, respectively. At Figure 3, the
simulated results are compared with the
experimental ones for point (1) in Figure 2.
Good agreement is seen between the
experimental data, the simulation results, and
the real path of solidification.  For
representation of the solidification sequence in
case of departure from equilibrium, Figure 4
shows the enthalpy-temperature curves which
correspond to the three points of the system. As
can be seen, the deviation from the equilibrium
curve (i.e. straight line) is quite evident, and this
deviation is affected by the cooling rate.

B. Microstructural Results
In addition to the representation of the real
path of solidification, micromodelling also
enables us to predict many microstructural
features. Here, the results of microstructural
aspects for Al-12%Si cast bar were compared
with those of other similar studies based on the
cooling rate.

In Figure 5 the simulated results for
maximum undercooling (ATmax) are compared
with those obtained from the experimental work

International Journal of Engineering
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Figure 1. Configuration of the casting and the mold geometries as well as boundary conditions.
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Figure 2. Two-dimensional finite element mesh of the system. determined cooling curves at point (1) in Figure 2.
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Figure 4. Simulated curves of enthalpy versus temperature
for three points in Figure 2.
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Figure 5. Comparisons of the simulated and experimentally
determined maximum eutectic undercooling for Al-12%Si
alloy.

of Elliott et al. [22] and Hogan et al. [23]. The
maximum undercooling represented is the
temperature difference between the eutectic
temperature and the local minimum value in the
cooling curve near to recalescence. In Figure 6,
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Figure 6. Comparisons of the simulated and experimentally
determined eutectic interlamellar spacing for Al-12%Si
alloy.

the simulated results of eutectic interlamellar
spacing are compared with experimental results
of Elliott et al. [22], Granger et al. [12], Atasoy
[23], and Liu et al. [12]. As can be seen,
although the experimental data are dispersed,
the trend of simulated results are in good
agreement with them. Calculations for eutectic
interlamellar spacing was based on the following
equation:

2(c). [V(T)T —b (32)
where for Al-Si eutectic alloy, a and b are 0.457
and  0.337, eutectic
interlamellar spacing is an average value since

respectively.  This

this is a time dependent variable. The average
spacing was calculated by dividing the total area
under a given curve by the total elapsed time.
Secondary dendrite arm spacing (SDAS) is
evaluated approximately by the following

equation:

SDAS=5.5(M.-) (33)

where M is the coarsening factor. Since in Al-Si

1/3
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eutectic alloy, the a-phase  grows dendriticly
[25], dendrite arm spacing is analysed for this
alloy. In Figure 7, the simulated results of
secondary dendrite arm spacing are compared
with experimental results of Tamminen [12],
AFS atlas [25] and calculated results of Zou et
al. [12]. Clearly, SDAS is proportional to local
solidification time (¢ f) - It is seen that the present
simulated results compare approximately well
with those of experimental values as well as
other simulated ones. One of the reasons for
the discrepancies appeared in Figure 7 is that
the coarsening factor (M) used in Zou’s analysis
had been for A356 alloy, whereas the present
simulation focuses on Al-Si eutectic alloy.

In the present work, a post-processing
module was developed for graphic presentation
of the simulation results. As an example, the
map of calculated grain size within the casting is
shown in Figure 8.

CONCLUSIONS

Macro-microscopic simulation of solidification

(1]

‘_i Tamminen (exp) [12]
5 A AFS Atlas (exp) [25]
E JEmasgl ------ Zou et al. (sim) [12]
oL Present simulation
R |
1
g
K 1
= |
=
p 10 ‘.. mA [
2 4w
1 £
= |
| ] \N
= -
E k.,
M- , _ -
0] Al-Si eutectic alloy
| 1%
| 0,21 0.1 1 in 1541
[ Cooling rate (°C/sec)

| P . =

Figure 7. Comparisons of the simulated and experimentally
determined secondary dendrite arm spacing for Al-12%Si alloy.
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Figure 8. Map of simulated grain size for Al-12%Si alloy.

for eutectic alloys is proposed. At the

macroscopic scale, the heat diffusion equation
was solved using finite element method. Skyline
technique was adapted for speed up the
calculation. At the microscopic scale, the
microenthalpy  method was used for

microstructure  evolution.  This  macro-
micromodelling enables us to represent real
path of soliditication as well as microstructural
features of the casting. However, for a full and
correct  representation of  microstructure
characteristics, it is desired to invoke a robust
method for solving the kinetic governing
equations as well as considerations of the

equiaxed/columnar transition in the system.
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TABLE 1. Thermo-physical Properties of Al-12%Si Alloy [21]

K P L . T,
(cal/gr.sec.°C) = (gr/em®)  (cal/gr°C)  (cal/gr) °C) (°C)

0.2225 2.000 0.3544 96.89 5770 |

TABLE 2. Various Parameters Used in the Microscopic Model [3,10,21].

750.0°

M

N AT, AT, I R;, :
iem'™ °C) i} (cm/sec/(°C)3) (mic) {cmm /sec)
LY [0 ' 401 5384100 (L1} 6.011.1012
NOMENCLATURE ith node of element of
N Lagrange interpolation function of the
Specitic heat )
o o o element ¢
Solute diffusion coefficient in liquid , ) .
I o  Maximum grain density
Internal solid traction ma . _ ,
o min  Minimum grain density
Solid fraction ! . )
- A o N, Total (final) grain density
Coefficients in the finite element . )
, , B Heat flux from convection
formulation (Equation 15) o
4 Heat flux from radiation
Diffuseness parameter
) ‘ . dip Imposed heat flux
Convective heat transfer coefticient . ,
o i o Q Heat generation rate per unit volume
Radiative heat transfer coefficient
— = Qext External heat flux
> ent .
Epeg ;c n me NN r Position vector
t t t t . . . . .
nthalpy at the jth node ol the R Radius of the growing nuclei at time <
element of ) . .
o R Average grain radius
Semmalicenthichuyty R, Initial radius of nuclei
Boltzmann 001.15tant ) S Surface of the element
Coefficients in the finite element SDAS  Secondary dendrite arm spacing
formulation (Equation 14) t Thickness of the domain
Latent heat of solidification T Temperature
Coarsening factor T Constant temperature
Coefficients in the finite element T, Pouring temperature
formulation (Equation 13) B, Temperature for which no convection
Unit normal on the boundary occured
Number of nuclei per unit volume T, Temperature for which no radiation
{grain density) occured
Interpolation function associated with Tp Eutectic temperature
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—

< << e 3

s
<

Temperature at the jth node of the
element of

Melting point of the pure metal
Velocity vector

Growth rate of equiaxed. eutectic grain
Volume of the element

Molar volume of the clusters
Cartesian co-ordinates

Greek Symbols

y; Correction factor (Equation 24)
T Total boundary of «
ré Boundary of element of
~H Enthalpy increment
AT Undercooling
AT, Mean nucleation undercooling
corresponding to the maximum of the
distribution
AT, Standard deviation of the distribution
N Time increment
€ Error tolerance for convergence
€p Emissivity coefficient
9 Parameter in the time approximation
A Eutectic interlamellar spacing
y Growth rate constant
p Density
o Stefan-Boltzmann constant
9 Surface energy of solid/liquid interface
v Time
T Local solidification time
Total domain of the problem
of Element domain
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