RELIABILITY OF REPAIRABLE SYSTEM WITH REMOVABLE MULTI-REPAIRMEN

M. Jain and R. P. Ghimire

Department of Mathematics
D. A. V. (P. G.) College
Dehradun-248001, India

Abstract In this investigation, the explicit expressions for reliability function and mean time to failure (MTTF) of a repairable system with provision of spares and removable multi-repair facility have been established. In removable repairmen strategy, the repairmen turn on when there are N or more than N failed units and turn-off when system is empty. The failure times of operating/spare units and repair time of failed units are exponentially distributed.

Key Words Reliability, Repairable, Removable Servers, Spare Units, MTTF, Transient Analysis

INTRODUCTION

The provision of spare part support in a repairable system is important in order to increase the reliability of the system. Some interesting results on the reliability of the standby redundant system can be found in Gopalan [1], Kumar and Agarwal [2], Gupta et al. [3]. Goel and Srivastava [4] provided the transient analysis of multi-unit redundant system. Jain and Sharma [5] and Jain [6] established the diffusion equation for a multi-repairmen general machine repair system with spares. Sivazlian and Wong [7] gave cost analysis for an M/M/R system with warm standby spare machines. Cost analysis of a two cold standby system with three modes of failure was discussed by Singh and Singh [8]. Agraftiotis and Singh [9] investigated the stochastic behavior of a two unit standby redundant system with two spare units from cost analysis view point. Agnihotri et al. [10] considered two unit redundant system with n-failure modes and developed fault-detection method. Gopalan and Bhanu [11] gave cost analysis of a two unit repairable system subject to on-line preventive maintenance.

In many real life situations, provision of full-time repairman costs the system which may not be important from the reasonable cost analysis view point. Yadin and Naor [12] first introduced the concept of a removable single-server system with exponential inter-arrival and service time distributions. Bell [13] studied the M/G/1 queueing system with the provision of removable server. Recently Hsieh and Wang [14] tackled a removable single-repairman system with arbitrary spare units. In some situations, there may be multi-repairmen facility in which repairmen turn on only when a threshold number of units are in failed condition. This motivates us to develop the reliability characteristics of a repairable system in which there are removable multi-repairmen and spare units. Such problems may be encountered in machining systems.
in the production processes.

THE MODEL AND MATHEMATICAL ANALYSIS

We consider a multi-repairmen service facility with the following assumptions:

i) There are M operating and S spare units in the system.

ii) The facility has c repairmen.

iii) System fails if there are less than K operating units i.e. more than L = M + S - K + 1 failed machines in the system.

iv) The operating (spare) units have exponentially distributed failure time with mean rate λ (α) and the repair times of failed units are exponentially distributed with the rate of μ.

v) Repaired units are assumed to be as good as the new ones.

vi) The repairmen turn on when N or more than N units fail and turn off when the system is again empty.

Our main objective is to derive the explicit expressions for reliability function R(t) and mean time to failure (MTTF) by using Laplace transform technique.

We denote

\[p_{0,0}(t) = \text{Probability that the repairmen are turned off and there are } n \text{ failed units } (n = 0, 1, 2, ..., N-1) \text{ at time } t . \]

\[p_{1,a}(t) = \text{Probability that repairmen are turned on and there are } n \text{ failed units } (n = 1, 2, ..., L) \text{ at time } t . \]

\[\tilde{p}_{i,a}(s) \text{ Laplace transform of } p_{i,a}(t), i = 0, 1. \]

The mean failure rate and repair rate are respectively given by

\[\lambda_n = \begin{cases}
M \lambda + (S - n) \alpha & \text{if } n = 0, 1, ..., S \\
(M + S - n) \lambda & \text{if } n = S + 1, ..., L - 1 \\
0 & \text{otherwise}
\end{cases} \]

\[\mu_n = \begin{cases}
0, & i = 0, 0 \leq n \leq N - 1 \\
\eta \mu, & i = 1 \text{ and } 1 \leq n \leq c - 1 \\
c \mu, & i = 1 \text{ and } c \leq n \leq L
\end{cases} \]

Using birth death process, we obtain the governing equations (in terms of Laplace of probabilities) for our model as follows:

\[(s + \lambda_0) \tilde{p}_{0,0}(s) - \mu p_{1,1}(s) = p_{0,0}(0) \quad (1) \]

\[(s + \lambda_n) \tilde{p}_{n,1}(s) - \lambda_{n-1} \tilde{p}_{n-1,1}(s) = p_{0,0}(0), \quad 1 \leq n \leq N - 1 \quad (1.2) \]

\[(s + \lambda_0 + \mu) \tilde{p}_{1,1}(s) - \lambda_0 \tilde{p}_{1,0}(s) - 2 \mu \tilde{p}_{1,2}(s) = p_{1,1}(0) \quad (1.3) \]

\[(s + \lambda_{n-1} + (n-1) \mu) \tilde{p}_{n-1,1}(s) - \lambda_{n-1} \tilde{p}_{n-2,1}(s) - n \mu \tilde{p}_{1,1}(s) = p_{1,n}(0) \quad 2 \leq n \leq c - 1 \quad (1.4) \]

\[(s + \lambda_n + c \mu) \tilde{p}_{1,n}(s) - \lambda_{n-1} \tilde{p}_{1,n-1}(s) - c \mu \tilde{p}_{1,n+1}(s) = p_{1,n}(0) \quad c \leq n \leq N - 1 \quad (1.5) \]

\[(s + \lambda_n + c \mu) \tilde{p}_{1,n}(s) - \lambda_{n-1} \tilde{p}_{1,n-1}(s) - c \mu \tilde{p}_{1,n+1}(s) = p_{1,n}(0) \quad N + 1 \leq n \leq L - 2 \quad (1.6) \]

\[(s + \lambda_{n-1} + c \mu) \tilde{p}_{1,n-1}(s) - c \mu \tilde{p}_{1,n-2}(s) - \lambda_{n-2} \tilde{p}_{1,n-1}(s) = p_{1,n-1}(0) \quad (1.7) \]

\[(s + \lambda_{n-1} + c \mu) \tilde{p}_{1,n-1}(s) - c \mu \tilde{p}_{1,n-2}(s) - \lambda_{n-2} \tilde{p}_{1,n-1}(s) = p_{1,n-1}(0) \quad (1.8) \]

\[\tilde{s} \tilde{p}_{1,1}(s) - \lambda_1 \tilde{p}_{1,1}(s) = p_{1,1}(0) \quad (1.9) \]

Also we note that

\[p_{0,0}(0) = 1; p_{0,a}(0) = 0 \text{ for } n = 1, 2, ..., N - 1 \]

\[p_{1,a}(0) = 0 \text{ for } n = 1, 2, ..., L. \]

The above set of equations (1.1-1.9) can be written in the matrix form as
\[A(s) \bar{P}(s) = \bar{P}(0) \]

(2)

where \(A \) is the square matrix of order \((N+L) \times (N+L)\) and \(\bar{P}(s) \) and \(\bar{P}(0) \) are column vectors of order \((N+L) \times 1\). Matrix \(A \) is shown in Figure 1, and the matrices \(\bar{P}(s) \) and \(\bar{P}(0) \) are given respectively as

\[\bar{P}(s)= [p_{0,1}(s), p_{0,2}(s), \ldots, p_{0,N}, p_{0,1}(s), \ldots, p_{1,N+1}, p_{1,1}(s), \ldots] \]

and

\[\bar{P}(0)= [p_{0,1}(0), p_{0,1}(0), \ldots, p_{0,N}, p_{0,1}(0), \ldots, p_{1,N+1}, p_{1,1}(0), \ldots] \]

Equation 2 can be solved by Cramer’s rule for \(\bar{P}_{1,1}(s) \) as

\[\bar{P}_{1,1}(s) = \frac{|A_{N+L}(s)|}{|A(s)|} \]

(3)

Before giving the solution for \(|A_{N+L}(s)| \), the sequence of tridiagonal matrices should be constructed as follows:

\[A_1 = (a_{11}) \]

\[A_2 = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \]

\[A_3 = \begin{pmatrix} a_{11} & a_{12} & 0 \\ a_{21} & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{pmatrix} \]

\[\vdots \]

\[A_m = \begin{pmatrix} a_{11} & \cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & a_{i,j} & \cdots & \cdots & \cdots & \vdots \\ \vdots & \vdots & \ddots & \cdots & \cdots & \vdots \\ \vdots & \vdots & \cdots & a_{m-1,m} & \cdots & \vdots \\ \vdots & \vdots & \cdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & a_{m,m} \end{pmatrix} \]

where

\[a_{kp} = \begin{cases} -\mu_{k+1} & \text{for } p = k+1 \\ s + \lambda_{k} & \text{for } p = k \\ -\lambda_{k-1} & \text{for } p = k - 1 \\ 0 & \text{for } |p - k| \geq 2 \end{cases} \]

Also let

\[\Delta_1(s) = |A_1(s)| \]

\[\Delta_k(s) = |A_k(s)| \]

\[\Delta_{m-1}(s) = |A_{m-1}(s)| \]

For \(\Delta_0(s) = 1 \) and using recursive formula, we obtain

\[\Delta_k(s) = a_{kk} \Delta_{k-1}(s) - \lambda_{k-1} \mu_k \Delta_{k-1}(s) \]

(4)

where \(k = 1, 2, \ldots, m - 1 \) (\(m \geq 2 \))

The complete solution for \(|A_{N+L}(s)| \) is given by

\[|A_{N+L}(s)| = \prod_{k=0}^{L-1} \Delta_k(s) \]

Figure 1. Matrix A.
\[\Delta_{N-1}(s) = \begin{bmatrix} \gamma & 0 & 0 & \cdots & 0 & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 0 & 0 & \cdots & \gamma & 0 & 0 \\ 0 & 0 & 0 & \cdots & \gamma & 0 & 0 \\ 0 & 0 & 0 & \cdots & \gamma & 0 & 0 \\ 0 & 0 & 0 & \cdots & \gamma & 0 & 0 \end{bmatrix} \]

where

Now we solve numerator \(|A(s)| \). It is clear that \(s = 0 \) is a root of \(|A(s)| = 0 \) which is a trivial solution. For a non-trivial one, let \(s = -\gamma \), then we have

\[A(-\gamma) = A(0) - \gamma I \quad (6) \]

where \(\gamma \) is an eigenvalue, and \(I \) is the identity matrix.

From Equations 2 and 6, we have

\[A(-\gamma) \bar{P}(s) = (A - \gamma I)\bar{P}(s) = \bar{p}(0) \]

Let \(\gamma_1, \gamma_2, \ldots, \gamma_i \) be \(i \) distinct non-zero real eigen values and \(\{\gamma_1, \bar{\gamma}_1\}, \{\gamma_2, \bar{\gamma}_2\}, \ldots, \{\gamma_i, \bar{\gamma}_i\} \) be \(j \) pairs of distinct conjugate complex eigen values where \(i + 2j = N + L - 1 \). Hence \(|A(s)| \) can be given by

\[|A(s)| = s \left(\prod_{k=1}^{i} (s + \gamma_k) \right) \left(\prod_{k=1}^{j} \left(s^2 + (\gamma_{i+k} + \bar{\gamma}_{i+k}) s + \gamma_{i+k} \bar{\gamma}_{i+k} \right) \right) \quad (8) \]

Using Equations 5 and 8, Equation 4 gives

\[\bar{p}_{1,1}(s) = \frac{\left(\prod_{k=1}^{i} \lambda_k \right) \Delta_{N-1}(s)}{s \left(\prod_{k=1}^{i} (s + \gamma_k) \right) \left(\prod_{k=1}^{j} \left(s^2 + (\gamma_{i+k} + \bar{\gamma}_{i+k}) s + \gamma_{i+k} \bar{\gamma}_{i+k} \right) \right)} \]

\[= \frac{b_0 + b_1 \frac{s}{s + \gamma_1} + \cdots + b_i \frac{s}{s + \gamma_i} + \frac{c_1 s + d_1}{s^2 + (\gamma_{i+1} + \bar{\gamma}_{i+1}) s + \gamma_{i+1} \bar{\gamma}_{i+1}} + \cdots}{s^2 + (\gamma_{i+j} + \bar{\gamma}_{i+j}) s + \gamma_{i+j} \bar{\gamma}_{i+j}} \quad (9) \]

where

\[b_0 = \left(\prod_{k=1}^{i} \lambda_k \right) \Delta_{N-1}(0) \quad (10) \]

and

\[b_r = \left(\prod_{k=1}^{i} \lambda_k \right) \Delta_{N-1}(-\gamma_r) \quad (11) \]

\[(-\gamma_r) \left(\prod_{k=1}^{j} (\gamma_k - \gamma_r) \right) \left(\prod_{k=1}^{j} \left(s^2 + (\gamma_{i+k} + \bar{\gamma}_{i+k}) s + \gamma_{i+k} \bar{\gamma}_{i+k} \right) \right) \quad (11) \]

Similarly from Equation 9, we have

\[c_r (-\gamma_r) + d_r = \frac{\left(\prod_{k=1}^{i} \lambda_k \right) \Delta_{N-1}(-\gamma_{i+j})}{\left(\prod_{k=1}^{j} (\gamma_k - \gamma_r) \right) \left(\prod_{k=1}^{j} \left(s^2 + (\gamma_{i+k} + \bar{\gamma}_{i+k}) s + \gamma_{i+k} \bar{\gamma}_{i+k} \right) \right)} \quad (12) \]
Inverting Laplace transform in Equation 9, we get

\[P_{1,1}(t) = b_0 + \sum_{i=1}^{j} b_i e^{-\mu_i t} + \sum_{r=1}^{i} \left[b_r e^{-\mu r \cos(v_r t)} + \frac{d_r - c_r e^{\mu r \sin(v_r t)}}{v_r} \right] \] (13)

where \(u_r \) and \(v_r \) represent the real and imaginary parts of the complex number \(\gamma_r \), and \(b_0, b_i, c_r, \) and \(d_r \) all are real numbers.

Since the system has failed during the infinite period of time, therefore \(\lim_{t \to \infty} p_{1,1}(t) = a_0 = 1 \). Hence the reliability function is given by,

\[R(t) = 1 - p_{1,1}(t) \] (14)

The mean time to system failure (MTTF) is given by

\[\text{MTTF} = \int_0^\infty R(t) \, dt = \lim_{i \to 0} \tilde{R}(s) = \sum_{\gamma_k} \frac{b_k}{\gamma_k} \sum_{\gamma_{ik}} \frac{d_k}{\gamma_{ik}^2} \] (15)

where \(b_k \) and \(d_k \) can be determined by Equations 11 and 12 respectively.

NUMERICAL ILLUSTRATION

In order to depict the effect of various parameters on reliability, we consider a numerical example by choosing \(M=7, \mu=1.0 \). Figures 2-6 give the time variations of reliability by varying different parameters. In Figure 2 reliability \(R(t) \) is plotted for different values of \(\alpha \) and \(\lambda = 0.3, 0.5 \). It should be noted that \(R(t) \) is insensitive with respect to \(\alpha \) as curves are almost coincident for \(\alpha = 0.1, 0.2, 0.3 \). Therefore, for other figures we set \(\alpha = 0.1 \). Figure 3 exhibits that \(R(t) \) decreases with \(N \). Figures 4 and 5 display the effect of \(S \) and \(K \) respectively on \(R(t) \). Figure 4 shows that \(R(t) \) improves significantly by employing more spare parts. We notice in Figure 5 that by increasing \(K \), \(R(t) \) decreases drastically. In Figure 6, by varying \(\lambda \) we observe that reliability decreases as \(\lambda \) increases.

Figure 2. Reliability vs.
In Tables 1 and 2, mean times to failure (MTTF) are summarized by taking different set of (N,S) and varying λ. It should be noted that by providing more spares, the mean time to failure increases. Also MTTF decreases significantly as failure rate λ increases.

DISCUSSION

Spare provisioning plays a crucial role in electronic, computer and communication systems as well as in defence. As huge amount of money is involved to
provide spares, the provision of removable repair facility may be helpful to reduce the burden to some extent, especially for large systems like aircraft and nuclear submarine, which have hundreds of components. The combination of spare units and removable repairmen employed in the present investigation may also be of great importance in various complex situations of machining systems in the production processes of new technology world to minimize the expected cost function. We have derived...
expressions for reliability and mean time to failure which can be computed easily as shown through a numerical illustration. These system characteristics may be helpful for system designer to determine the optimal number of repairmen and spare units.

ACKNOWLEDGEMENTS

This work is supported by University Grant Commission, New Delhi (India) under UGC career award project No. F. 10-20/93 (SA-III). The authors is thankful to unknown referee for their helpful comments for the improvement of the present paper.

REFERENCES

