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Abstract  Accurate estimation of motion from time-varying imagery has been a popular problem in
vision studies. This information can be used in segmentation. 3D motion and shape recovery, target
tracking, and other problems in scene analysis and interpretation. We have presented a dynamic image
model for estimating image motion from image sequences, and have shown how the solution can be
obtamned from a set of partial differential equations. In this paper, we have investigated a relaxation type
algorithm for obtaining a numerical solution to these equations, and considered the implementation of the
algorithm onavariation of the general pipeline interconnection scheme using transputers. This architecture
is compared against two others based on flexibility and efficiency. It is observed that with respect to
computation, amesh connected architecture has advantages over the proposed pipeline scheme. However,
the pipeline configuration is easily expandable and more robust to changes in the algorithms parameters
and image size.
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INTRODUCTION

Vision is the most powerful sensing capability of
humans and most other biological systems. In over
two decades, computer vision researchers have been
involved in research problems related to giving
machines “Some sense of visual perception” in order
to function in their environment with intelligence.

Until about a decade ago, the most significant
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bottleneck in the realization of such systems was lack
of the technology to meet the computational
requirements [1]. Because of the amount of data
involved, even today’s conventional single-CPU
serial computers are unable to provide sufficient
processing power for real-time performance in most
vision problems. Therefore, the need for special
purpose multiprocessor hardware is immanent. An

important question is how to arrange the processors
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in an interconnection scheme which would achieve
the highest efficiency and speed up possible. In [2].
the authors discuss a number of mesh connected
architectures for image processing and vision. In
theirwork, they developefficientalgorithms to support
data routing among the processors. Pipeline
architcctures have proven to be effective for image
processing [3], but are seldom used for vision tasks.
With the introduction of transputers to the world of
computing, the task of interconnecting processors
has become easier. Transputers are processing
clements (processor and memory) with four built-in
communication channels. They are designed to be
easily connected inmesh fashion and to communicate
with each other over their communication channels.
This is a particularly useful feature of transputers for
vision applications.

Vision problems involve processing two-
dimensional images to extract useful information
about a three-dimensional world and the objects in it.
Useful information refers to what permits an
autonomous agent or robot to interact with its
surrounding environment intelligently. Forexample,
arobotneceds to detect nearby objects and avoid them
in order to navigate without collision in rooms,
hallways, or outdoors. To do so, a robot equipped
with optical sensors should be able to determine its
distance 1o obstacles as well as its motion relative to
stationary or moving objects using visual cues.

The change in the positions of objects in a scene
relative to the camera induces variations in image
brightness patterns. The perceived motion of these
pattemns, referred to as oprical flow, contains rich
information about the scene. It can be used to inferan
object’s shape, position, spatial arrangement, and/or
motion relative to the camera. Efficient computation
of optical flow with an acceptable level of accuracy
has been one of the most important rescarch topics in
vision. The root of the problem dates back to the

psychophysics studies on human visual perception in
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the early part of the century [4]. Of varous types of
approaches to solving this problem (e.g.. see [5] tor
a survey), gradient-based methods have particularly
been attractive for obtaining a dense, yet rcasonably
accurate, estimate over the whole image, pioneercd
by the work in [6].

In this paper, we have investigated the
implementation of 4 method for the computation of
optical flow [7]. The solution to the problem is given
by a set of partial differential equations, based on a
formulation in variational calculus, which can be
determined numerically using a relaxation type
algorithm. We have considered issucs related to the
implementation of the algorithm on a variation of the
general pipeline interconnection scheme using
transputers. This architecture is compared against
two others based on flexibility and efficiency. It is
shown that with respect to computation, a mesh
connected architecture has advantages over the
proposed pipeline scheme. However, the pipeline
configuration is easily expandable and more robust
with respect to changes in the algorithms parameters

and image size.
PRELIMINARIES

Let e(r) denote the image brightness of some scene
point, where r = [x,y,f]” is a point in the image-time
volume. At some later time + 67, the scene point may
move relative 1o the camera and thus projects onto a
new pointr+ 8r= (x+udt, y + vor, 1+6t]. In addition,
the image brightness of the point can vary by d¢ =
e (r + dr) - e (r). Computation of image motion/flow
involves determining from an image sequence, the
displacement [u,v]" during the time interval tto 1 + ot
for every image point r.

Negahdaripour et al. [7, 8] have investigated the

application of the constraint equation
E+Eu+Eyv-Em-c=0 (D)

International Journal of Engineering



for the computation of optical flow. This equation is
derived from the dynamic image model

L (r+ or) = M(r) E(r) + C(r), 2)

which permits varations in the brightness of an
image point according to a linear transformation
model, involving multiplier and offset fields M and
C.Wehaveused §m=M -1 and §c=C-0Oto represent
the transformation fields M and C interms of variations
about 1 and 0. respectively. The difficulty in solving
the optical flow problem is that, at each image point,
fourunknowns (1, v, m . and ¢ ) need to be determined.
However, Equation 1 provides only one constrainton
the sought after unknowns,

In overcoming this problem, we note that the four
ficlds vary smoothly over most regions of the image.
Discontinuities in depth (for example, at occluding
boundaries) give rise to discontinuities in the optical
flow. Also. object motions may be different across
occluding boundaries, which also give rise to
discontinuities in the optical flow. Additionally,
discontinuities can be cxpected in m, and ¢, if
illumination conditions or reflection properties that
depend on surface material change abruptly as the
surface moves in the envimoment. However, these
discontinuitics are typically restricted to isolated
regions in the image. Based on these facts, it is a
reasonable assumption to require thatthe optical flow
and the transformation fields should vary smoothly
from one image point 1o the next.

Onc way to impose smoothness on some ficld fis
to minimize the integral of its gradient magnitude

over the whole image:
= | | (FE+f) dx dy. (3)
where f_ = dffdx and f = df/dy. A measure of departure
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from smoothness according to Equation 3 can be
written for each of the related fields u. v, m, and Cp

and combined with an appropriate weighing factor:
e(uymoc)y=Ae +Ae +Ae +Ae, (4)
§ [N & U ou Vo m-om (SN

where the constants A, A4, 4, and A_are the weights
for each term.

Finally, the problem can be formulated as a
minimization problem by combining the error in the
optical flow constraint equation and the smoothness

measure into a single functional formula:

euyvm,c)=elnvm,c)+ ”(Et +Lu+Ey-Em, -

¢ ) dxdy (5

Minimizing e by the appropriate choice of the four
fields, u, v. m, and ¢, is a problem in variational
calculus. It involves the application of the Euler-

Lagrange equation,

Jd¢ 9

T (%"’—)-a—(ﬁﬂ)ﬂ), ©)
[¢ X afx

dy dfy

where ¢ is the integrand in the cost functional e, and
S is each of u, v. m, or ¢. We have shown in
Negahdaripour et al. [7] that the discrete
implementation of the resulting equations can be

written in the form x= A" g(x), where
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In these equations,
F=Lfar L y) +FOLy) +f Oy + D+ (e y-1)

(7
represents the average of cach field f over the four

=

(north, south, west, and east) neighbors of an image
point. Since the unknowns ateach image pointdepend
on the average of the fields over the neighboring
cells, the solution to this problem is typically obtained

from an iterative scheme of the form
Xlc+1 = A-I g (ik), (8)

where k is the iteration index, This iterative scheme,
sometimes referred to as Jacobi iteration, requires
updating the value at each image position at iteration
k+1 based on the average values of the 4 ncighbors
from estimates atiteration k. The number of iterations
needed to arrive at an accurate solution depends on
the initial guess. Itis desirable to have an initial guess
which is a good estimate of the solution. For a
sequence of images taken at a rate of 30 frames per
sccond and assuming a smooth motion, the flow
computed for some past frame (ideally last frame) is
generally a good initial guess of the flow in the
current frame. In most cases, only a few iterations are
therefore sufficicnt to obtain a reasonably accurate
solution. Inexperiments with 64x64 images of various
texture levels, including the ¢xample in this paper.
about 10iterations, starting with an initial guess from
previous frames, has been sufficient for convergence
[9]. Needless to say, if the motion changes rapidly
between frames, many more iterations may be required
before an acceptable solution is obtained. Efficient
multi-resolution schemes to address such problems
have been proposed [10].

These types of algorithms adapt well to parallel
implementation. The approach taken in this paper is
that of domain decomposition. In domain
decomposition, a set of data is divided among the

computational nodes of the parallel processor system
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(anotherexample of this approach is thatof numerical
integration). In the sections that follow, we discuss
three interconnection schemes and point out
advantages and disadvantages of each.

First, a squared mesh-connected architecture is
described. Here, the information is loaded into the
processors before the computation is started. Next, a
general pipeline is discussed, where operations are
performed on streams of data. Finally, a variation of
the general pipeline interconnection is suggested.
This interconnection attempts to address the
shortcomings of the general pipeline architecture.
These architectures are compared based on the speed,

hardware complexity, and flexibility.

SPECIAL ARCHITECTURES

Since the solution of the algorithm is obtained from
the Jacobi iteration, the need for processor
communication is immanent. Although any
processing element with four communication
channels can be used. we have chosen transputers
(IMS T801) as an example. The IMS T8O1 also
includes a 64 bit floating point unit that is rated at 4.3
Mflops peak at 30 MHz. Experiments with various
multiprocessors and multicomputers have shown that
a processor rated at 4.3 Mflops will deliver about 1

Mflops for our type of computations.

DESIGN ISSUES

In order to design a special purpose architecture for
implementation of the optical flow algorithm, two
important ssues should be considered. One is the
computation power needed to carry out the
implementation in real time and the other is the
communication pattern among the processors. The
number of processors needed is directly related to the
amount of computation done and inversely
proportional to the Mflop rating of the processor. The

communication pattecrmn among the processors is
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dictated by the nature of the algorithm and the choice
of partitions.

Computational Issues

To calculate the required computational power for
real-time processing, the algorithm was coded on a
machine with a known Mflop rating and execution
time of the program was measured. Every part of the
calculation was timed and using the Mflops obscrved,
the number of floating point operations nceded for
every part was calculated. These parts consist of
calculating necessary image gradients, constructing
A, and iterating once.

Communication Issues

A transputer messaging time is calculated using
2xW+19 cycles (33 nano seconds per cycle). In this
fomula W is the number of words in a message (4
bytes per word). The communication time among
transputers depends not only on the number of words
in each message, but also on the number of messages
sent. Therefore, itisdesirable to minimize the product
of the above quantity and the number of messages

sent.

INTERCONNECTION SCHEMES

Mesh

Using the estimated transputer rating discussed earlier,
itis calculated that about 64 transputers are needed to
compute optical flow in real time (30 frames/second).
The communication among the transputers is achieved
through all fourchannels (Figure 1). Since transputers
contain only 4 Kbytes of local memory, 65536 bytes
of extemal memory is needed for a 64x64 image.
Fourhigh speed buses (minimum bandwidth of 65536
bytes/sec) connect the links on the four sides of the
mesh. Two of these buses are used to load the image

and unload the results from the transputers and the
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other two arc for general purposes.

The computation of optical flow for an image
sequence is performed as follows: A 64x64 image,
sampled at one frame per thirtieth of a second, is
loaded through the top transputers. Each transputer
holds an 8x8 patch of the image. Each transputer
calculates image gradients within the patch and
constructs A, It then performs 10 iterations, each
time communicating an array of eigtht float numbers
containing the results (u, v, m, and ¢) for the border
pixels to each of its neighbors. This is a cost of
(2 x4 x 8+ 19)=83 cycles each time the array is sent
orreceived. This is sent to and received from each of

the 4 ncighbors. Thus, the total messaging time is

®x83Hx—1
30 MHz

times for the computation of gradients, construction

=0.0221 msec. Using the measured

of A, and 10 iterations, the total processing time is
(0.01318 x 64 + 0.04963 x 64 +10 x 0.03903 x 64) =
29.0182 mscc for 64 pixels. To unload the results,
cach bottom-row transputer takes turn putting its
results and those from the transputers above it on the

bus. Meanwhile, the top transputers get the next

| . — —
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Figure 1. Conventional mesh architecture with high-speed
buses connecting free links.
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frame of the sequence and communicate itdown. The
unload time for each packetis (2 x4 x 64+ 19) x
1/30MI1z = 0.0177 msec, and the total time for
transferring 64 packets is 64x0.0177 = 1.1328 msec.
The total communication and computation time
amounts to 0.0221 + 29.0182 + 1.1328 = 30.1731
msec, which is within one thirtieth of a second.
The proposed mesh architecture performs well for
the particular image size and number of iterations;
the mapping of data is straightforward, the
communication bandwidth i1s low. and real time
performance is achieved. However. some applications
may require more iterations for convergence,
depending on the quality of data and the type and
amount of motion. This architecture cannot be easily
modified to accommodate more iterations, while

maintaining the same topology.

Pipeline

Based on computation time measurements, it is
calculated that S parallel pipes of 10 stages cach are
needed for 10 iterations in real time. Additionally, 2
transputers arc needed for computing gradients and
constructing A" for each of the 5 pipes. This amounts
to 12 stages per pipe as shown in Figure 2. Four high-
speed buses (minimum bandwidth of 65536 bytes/
sec) connect the free links on the sides. Each pair of
adjacent buses are connected through a switch box.
Therefore, contents of each bus can be linked onto
any other bus.

When performing the computation on the mesh
connected architecture, the final solution for the
previous frame is already resident in the memory,
which can be used as the initial guess for the current
frame. Thisisnotthe case with a pipeline architecture.
The available solution, when the first pipe stage starts
its computations, is the solution of the last pipe stage
from 10 frames before (10 is the depth of the pipe). If
the motionis reasonably smoothin time, this solution

is agood initial guess. Inthe implementation discussed
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Figure 2. Conventional transputer pipeline with switches
connecting four high-speed buses.

here, this is assumed to be the case. (Examples
supporting this assumption are presented in {9}].)
The first stage (row) of the first pipe (column)
takes the initial guess of the solution and the first 819
(64 x 64 pixels/5 pipes) column-major pixel values,
the first stage of the second pipe takes the next 819
column-major pixel values and initial guesses, and so
on. Half of the information is sent down to the sccond
stage (row). These two stages compute the gradients
and A" for the whole image. The A" data along with
the initial guess (unprocessed) is passed on to the
third stage (row) to start the iterative calculation of
optical flow. Meanwhile, the first two stages get the
next frame and the initial guess. From here, each
stage communicates its border values and performs
one iteration. The results of this iteration and the A-
" matrix are then sent down the pipe to the next stage
and the results for the next frame is received from the
previous stage. This procedure is repeated at every
stage until the final result (from the last row) is ready
to be put on the output bus and also rerouted to the
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input bus through one of the side buses.

Between the stages, one needs to communicate u,
v, m, and ¢ as well as 10 clements of A-' (the matrix
is symmetric). The time for communicating between
stagesis2x (2 x14x819+19)x 1/30 MHz=1.5300
msec. Receiving data from the top bus (image and
initial guess takes ((2 x1024 + 19) + (2 x4 x 819 +
19)) x 1/30 MHz = 1.0967 msec, but this occurs
during the 1.5300 msec time interval for the
communication between the stages. Computing one
iteration for 819 pixels takes 0.03906 x 819 x 30 =
31.9922 msec. The communication of border
information consists of sending and receiving a
message to and from the neighbors on each side. A
column of results (4 computed fields for 64 pixles) is
communicated. This takes 2 X 2 x (2 x 4x 64 + 19) x
1/30 MHz = 0.0708 msec. The total communication
and computation time is 0.0708 + 1.5300 + 31.9922
= 33.5930 msec, which is just over one thirticth of a
second. Anadvantage of the pipeline is thatitis easily
reconfigurable to accommodate different number of
iterations. This and/or furtherprocessing of the results
can be accomplished by adding extra stages to the
pipe without violating the design principles and
topology. The shortcoming of the pipe, compared to
the mesh, is limitation on motion variations per
frame. This is due to the fact that the initial guess for
each framc is the solution from 10 frames before.
Additionally, it requires a relatively large body of
data to be communicated between various stages.
This problem can be solved by using semi-shared
memory between every two stages of the pipe, as we

discuss next.

Modified Pipeline

This architecture is similar to the previous one with
one fundamental difference; there are no links between
the different stages of the pipe, except for the first two
stages. The portion of the image needed in the second

stage is passed on through this link. In this design,
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eachtransputer 7 involved initeration £ has access to
four external memory modules, two for reading (M7
and Mi) and two for writing (M{' and M )(see
Figure 3). Note that M{”' and M{” are the same as M4
and M7, in this notation. Transputer T, reads the
results of iteration & - 1 on image n from M) (M%),
performs one iteration, and writes the output to M{*
(MZ—%[ ). Meanwhile, transputer 7, | reads the results
ofiteration k onimage n-1 from M{" (M), performs
one iteration, and writes the output to M[-’lzl, At the
next time interval, the access to memory modules
reverses. Transputer 7' reads the results of iteration k-
| on image n+1 from M3 ( Mlz), performs one
iteration, and writes the output to MY (MZIH).
Meanwhile, transputer 7,+1 reads the results of
iteration k& on image n from M performs one

interation, and writes the output to M (see Figure
4).

The computation of gradients and A on 10
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Figure 3. Modified transputer pipeline with memory
modules substituting the links.
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transputers is 25.75 msec and receiving and sending
image portions takes about 0.07567 msec. Sending
A'1o the second stage takes 0.2733 msec. Therefore,
the results are ready for the third stage within
approximately 26.1033 msec. Each iteration takes
31.9923 msec and sending the results on the bus via
links for S transputers taking tums takes (2 x4 x 8§19
+ 19) x 5§ x 1/30 MHz=1.09666 msec. In addition,
communicating the results at each iteration takes
0.0708 msec. Thus, the total computation and
communication time is about 33.1597 msec (within
frame rate).

Using semi-sharcd memory modules, the
communication among the different stages of the
pipe is climinated. This architecture, as in the previous
case. is easily reconfigurable to allow more or fewer
iterations. This is achieved through duplication or
removal of stages of the pipe. Also, the feedback
connection providing initial guess can be placed at
any stage.

The feedback lag of the initial guess is directly
proportional to the depth of the pipe. The architecture
can be reconfigured to 10 parallel pipes of 6 stages
cach, instead of 5 pipes of 12 stages. The first stage
performs the gradient calculations and froms A™'. The
remaining stages perform 2 iterations on each data
set. In this architecture, there would be no links

between the stages and all transputers will have semi-

Mty e
L
x(A’I ) e
T
Mwl(Mm) o
PO @5
.
Ml @B
)

shared memory. By doing so (reducing the depth) one
can feed back the results from 5 frames before as the
initial guess for the new frame. If one chooses to
perform one more iteration, another stage needs to be
added to the pipe. This costs 10 transputers for the 6-
stage pipe as opposedto 5 transputers forthe 12-stage
pipe. If two more iterations are needed, both
architectures result in the same cost (10 transputers).
By lowering the depth of the pipe and expanding the
width, one gains flexibility with respect to the motion
sizes that the pipe can handle, butlooses efficiency in
expanding the pipe at low cost. Different depths can
be achieved in the same manner.

Additional pipes can be added to the system by
placing them in parallel with the existing ones. Doing
so enables processing of 819 more pixels per pipe
added. In the case where the pipe is only six stages
deep. addition of another pipe will result in the ability
to process 410 more pixels. Of course, this only

requires half as many transputers.
AN EXPERIMENT

A sequence of 75 images were taken, simulating the
motionof anunderwater vehicle nearan oceanbottom-
floor (see Figure 5a). The scene is asheepskin curtain,
shown in Figure 5b, with similar surface texture

properties as that of the ocean floor. The optical flow

Figure 4. Memory access method, with configurations (a) at time ¢ and (b) at time 1 + &
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for each frame k was computed from 10 iterations of
the algorithm, using as initial guess the solution from
frame &-10. Only the flow for the last frame is shown
in Figure Sc due to space limitations. The flow shows
that the vehicle motion is towards the scene and to the
right. From the optical flow, the motion of the vehicle
can be computed using a number of techniques.
Using the method in [11], we estimated the vehicle
translation between each frame. The error in the
computed motion-vs-iteration number for the last
sequence, given in Figure 5d, shows the convergence
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within a few percent of the true solution in about 10
iterations.

SUMMARY

We have investigated iterative computation of
optical flow for image sequences using 3
interconnection schemes. An 8x8 mesh has been
found sufficient for real-time computation on 64x64
images, permitting 10 iterations per frame using as
the initial guess the solution from the previous
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(d) motion-vs-iteration

Figure 5. A Selected experiment showing motion trajectory {a) a particular image of the low-textured
scene (b) estimated optical flow for the last frame and (¢) error in the estimate motion-vs-frame number.
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frame. However, the reconfiguration to
accommodate variations in image size and/or the
number of iterations can not be done cfficiently. A
general pipeline architecture overcomes this
problem, but requires an extensive amount of
communication. A modified pipeline scheme has
been proposed to eliminate the need for
communication between stages of the pipe. As in
the original pipeline, it can be easily expanded by
duplicating its stages. In the pipeline architecture,
the initial guess of the iterative process on image »
1s the solution from image n-&, where £ is the depth
of the pipe. This imposes some limitations on the
acceptable motion variations between consecutive
frames. The modified pipeline permits feeding the
information from any intermediate stage back to
the first stage. Both architectures allow extending
the width of the pipe and reducing its depth, thus
decreasing the lag in the initial guess feedback.
This is achicved at the expense of less efficiency,
since each stage of the pipeline gets less of the
image to process. However, this permits more

iteratons to be performed, if necessary.
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