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Abstract This paper reports the result of an analytical investigation of a steady, incompressible
and viscous flow between two eccentric, rotating cylinders at high Reynolds number. A one dimensional
case is far from reality because the gap between the cylinders is very small. Further, when their axes are
displaced by a small distance, usually caused by bearing loads, two dimensional effects become obvious.
Here the equations of motion are perturbed and made linear. Then utilizing the boundary layer theory,
these equations are solved for the case of large Reynolds number. The results are compared to those of
other works.
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INTRODUCTION

This study is concerned with the viscous incom-
pressible steady flow between two rotating
eccentric cylinders. The analysis of the dynamics
of abearing is incomplete without the knowledge
of the pressure distribution inside the lubricating
fluid. In order to find the pressure distribution,
the governing equations of the flow motion are
to be solved. This is not an easy task even if the
flow is considered to be two-dimensional by
assuming that the cylinders are infinitely long.
In the case when the cylinders are concentric,

the flow is one dimensional and an exact solution
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for the pressure distribution is easily found.
One of the early approximate equations in this
case is known as the Reynolds equation. Wannier
[1] established that this equation arises as afirst
approximation of all quantities appearing in the
Stokes equations when expanded in powers of
the film thickness, usually small. This equation
was solved by Sommerfeld [2] as early as 1904
and Kamal [3] has presented a brief summary of
Sommerfeld's solution. The most recent study
of this analysis using perturbation methods has
been done by Rahimi and Ajam [4]. However,
these cases are far from reality because in the

bearings the gap between the cylinders in very
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small and when their axes are displaced by a
small distance, usually caused by bearing loads,
two dimensional effects become obvious. Many
scholars have investigated this problem.
Kulinski and Ostrach [5] and Diprima and Stuart
[6] have expanded the flow quantities in powers of
small modified Reynolds number and small
eccentricity. Their solution are only good forrelatively
small values of Reynolds number. Only Wood [ 7] has
considered solutions that are valid for any value of
Reynolds number. He expanded the flow quantities
in powers of an eccentricity measure in a modified
bipolar coordinate system. His solutions are given in
terms of Bessel functions of complex order and
complex argument and also secular terms are found
in the straightforward expansions. Moreover, Wood
presents only the first order corrections, but stability
analysis shows that the square of the entricity is
needed. Following Wood, Selmi [8] has also looked
at this problem. However, their studies are more
directed toward flow stability and lack pressure
calculations. Some other recent works are the one
by Szeri [9] which is numerical and the work of
Luis San Andres [10] which considers the effects of
joumal misalignment on the operation of a hydro-
static bearing. We will compare our result to that of
Szeri.

In this work the second-order corrections are
presented along with the first-order results in terms of
elementary functions. This is done by taking the
distance between the axes of the cylinders, known as
eccentricity, very small and assuming large Reynolds
numbers.

Therefore, the study deals with two small per-
turbation parameters, the eccentricity and inverse of
the Reynolds number. The latter makes the problem
interesting because it requires a singular perturbation
theory treatment. The flow quantities are expanded in
powers of the inverse of Reynolds number, which is
different from other works. When seeking this ex-
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pansion the problem becomes a singular perturbation
problem because this parameter is multiplied by the
highest derivative term in the existing equations.
‘While it is comparatively easy to find a uniform
expansion foraregular perturbation problem, itis not
so easy to find one for a singular one. At the end by
finding the flow quantities, composite pressure is
obtained. This pressure is compared with the results
of other works.

MATHEMATICAL ANALYSIS OF THE
PROBLEM

In this section the equations governing an incom-
pressible, viscous flow between two rotating cylin-
ders are considered in polar coordinates. These
cylinders are infinitely long and of radii a and b with
axes displaced by a small distance e, as shown in
Figure 1. The angular velocity of the inner and outer
cylinders are Q, and Q, respectively. The flow is
assumed to be two-dimensional, the fluid has con-
stant properties, and body forces are assumed to be
negligible. The goveming non-dimensional equa-
tions in polar coordinates are the continuity and

the r and 6 components of the momentum

equations:
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Figure 1. Description of geometry in polar coordinates.
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with the following nondimensional boundary
conditions:

Vr (1,H)=0
Ve(1,6)=1
Vi, =-(Q2/Q1)e Sin 6

@)
Vo(ro, 6)=(Q2/Q1) (o> +13-¢2) /2aro

In these equations and with the help of Figure 1,

_Qia?
R==2 &)
ro=8COSH+.1I'I."|'—:-t"' Sin? @ ©)
=€
£=2 @)

Note here v is kinematic viscosity. These equations
canbe simplified by introducing the vorticity (@) and
stream function (y) such that

d
v,=12¥ 8
ey ®
Vo=- aa_‘f ©)

By taking the Curl of the vector form of the
momentum equation, the vorticity transport equation
results:
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2
Vv, 900,V 00_110 (90,1 Jo (10)
or T 060 R Tor ar 12392
where
10 10

If Equations 8 and 9 are substituted into Equation 11,
the so-called Poisson’s equation results:

2
19q9% 19y (12)
Tar odr 12 3¢

0=-
The boundary conditions on y are:

VY (1,9=0 V1, 6=-1
ar(,g) > ar(96)

(13)
aa_w @0, 6) =- (Q2/Q1) bF 2>+ 13- £2) /21
T

%% (0, 6)= -(Q2/Q1) e o Sin O

Equations 10 and 12 along with the boundary condi-
tions 13 represent the mathematical model for the
flow motion between two rotating eccentric cylin-
ders in polar coordinates. Note that, as of Equation 6
the outer cylinder (r,) is a function of £ which causes
problems when seeking an approximate solution to
the flow equations by expanding the flow quantities
in terms of &. For this reason we follow Wood and
introduce a modified bi-polar coordinate system in
which the description of the boundaries is not a
function of p and can be described with a single
coordinate variable.

We use the conformal transformation:
7=_S*7 14)
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with Z= re® and {= pei¢ and

1
y=-2€ [(%)2-1-82+aJi2 1-£%°-4g? 15)
o3

This transforms the two eccentric cylinders in the Z(r,
) plane into two concentric cylinders in the { (p,¢)
plane. As a result, the circular sections of the inner and
outer cylinders are transformed to the coordinate lines
p=1and p = Binthe p, ¢ coordinate system, where

B= (bha)+e-y (16)
1-(bfa)y-€y

Figure 2 shows a superposition of the polar and
modified bi-polar coordinate systems. The coordi-
nate variables p and ¢ have been modified so as to
generate two polar variables r and 6 when the
cylinders are coaxial.

The stream function in the new coordinate system

is defined by:
T .
up =1t L 7
=53 P (
up=-17 X (18
¢ 36 )
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Figure 2. Description of geometry in the modified bi-polar
coordinates.
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where u, and u, are the components of the velocity
field in the p and ¢ coordinates, respectively, and J,
the Jacobian of the transformation, is given by

J=(1+27COS¢+72p2)2 (19)
a-ry*

The vorticity-stream function equations in the new
coordinate system become

L[a_![/?ﬂ_a_l//a_@_]:_l_vzw (20)
P 3¢ 3p 9p 3 R
w=-JV?y (21)
2 2
where v2=9 .19 .10
dgp?2 Pap P

and the boundary conditions are transformed to

IV (1,4)=0 22)
a9

oy 1

W (1,¢)=-—L_ 23)
20 ViLe

IV (5,4)=0 @4)
ap

WV (5, 9)=- LA @25)
90 ViG.0)

whereq,=Qa,q,=Q b, and yisbounded att=0. Our

aim is to find an approximate analytical solution to
those equations.

It is clear from Equation 15 that yis a measure of
the eccentricity (€). It is, therefore, a small parameter
since € issmall, and it reduces to zero when ereduces
to zero. This parameter () is used here as our first
perturbation parameter to linearize the equations of
motion. This is done by assuming the following

asymptotic expansions for the stream function and
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vorticity:
V=YY iy Yt (26)
O=wo+y 1+y*mm+... 27
and J as
J=1+4y Cos¢p+2y2(1+p*+2p2Cos? ) +...  (28)

If J is written as

I=Jo+y J1+¥2%)2 (29)

then by comparison with Equation 28

Jo=1 (30
Ji=4y Cos ¢ 31
J1=2(1+2p2+p2Cos2 ¢) (32)

This analysis will be confined to second-order accu-
racy in y. Upon the substitution of Equations 6, 7, 8,
and 9 in Equations 20 and 21 and equating the
coefficients of different powers of yto zero, three sets
of equations are obtained. Each set solves for
Wo, Yo, 01, Y1, and @2, Y2, respectively. The algebra
is very tedious and is not presented here. We only
mention that in the process of solving these equa-
tions, the factor of inverse of the Reynolds number,
taken here as a very small number, appears in front of
the highest derivatives. Therefore, we have to do an
inner and outer expansion taking the inverse of the
Reynolds number as a second perturbation param-
eter. Solutions so far are called outer solutions, see
Nayfeh [11]. Notice here that as 7y goes to zero the
cylinders become coaxial and the flow is one-dimen-
sional. Therefore the flow quantities at the zeroth

level of (w, and y,) are independent of ¢. Since the
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highest derivatives of the govemning equations are
multiplied by the small parameter 1/R, then the
problem described here is referred to as a boundary
layer problem. It is also known as a singular pertur-
bation problem. Thus these equations are solved by
the method of matched asymptotic expansions, see
Reference 11. The solutions obtained above are only
valid outside the boundary layer region. Therefore,
solutions that are valid inside the boundary layer are
developed by means of introducting stretching trans-
formations to account for the rapid change of the
dependent variable inside the boundary layer. These
are called inner solutions. Again the algebra is very
tedious here and we only mention that the stretching
transformations that characterize these boundary lay-

€1S are

'g':ﬂ near p= 1
A

and A=VYR

n=PP  rear p=p
A

The next task is to match the outer solutions and
inner solutions to yield a uniform expansion that is
valid throughout the domain of interest. This expan-
sion is referred to as composite expansion. This is
done by using Van Dyke’s matching principles, see
Reference 11. Here we only present the composite
solution for u, component of velocity. The solution

¢
for the function y up to the second-order is

V=Yt YRy, + 72y, + O(YRY, yPR2, 77)

(33)
Inthis expansion O(yR!, ¥’R-2, ¥*) indicates thatthe
accuracy involved in this expansion is up to the
maximum of y3, y?R2 | yR-,

W0=-%Ap2-Blnp (34)
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where

a=B2/q1-1 (35)
p*-1

B=ﬂ'ﬂq2/q1 (36)
B*-1

v, = [AB?p ! - A(1+B?)p+Ap’] Cos¢ 37D

v,.=F,(p,9 +P,({ &+K, (0, ¢) (38)

and

2
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2 B (8. p%y .2 A0 .1
1% BB NG a1p1Cone- D)

(39)
Pn=2{A( + ) -1];m®512@c00s(¢-§)

+2[A0 + 8% -1];msm%§ Sn¢-L)  @0)

—2Brac1- Q. PDEBN - Y2 § .
Ru—ZTS[A(l ﬂ2)+ﬂ(_h_]e Cos ; B-nCos(q) z.t.)

B Q2. VD@ 0 Y2 81 Sin (6 -
+21a0- )+ e slnlzC 2nSn (-2

@41
in which
¢=R"7(p-1) 42)
n=R"*B-p) 43)
and
6= VB -/ 44)
and finally we have,

—.Llppe 14927524892
ym=-1Ap +AQ+B) LB+ B 2AB) np

2 6
+[-Aﬁ411—'l;L4 pi+A -i-;;% p2-Ap*Cos2¢  (45)
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Now from Equations 17 and 18 the components of
velocity can be tound. Next we will find the second-
order pressure.

First by substituting Relations 8 and 9 into Equa-
tion 2, we write this equation in terms of y function.
Then, by transferring the terms into the (p, ¢) coordi-
nate system, Equation 2 is written in terms of dy/dp
and dy/0¢ .Finally by substituting the solution 33
into this equation, we can integrate for pressure.
Notice that since the quantities used in the process of
calculating pressure are composite, then the obtained
relation for pressure is also composite solution. This

result is shown in the next section.
NUMERICAL RESULTS AND DISCUSSION
Here we present some numerical results for velocity

component u, and pressure, along with a general

discussion. Figures 3 and 4 show velocity profiles in

- - - =Concentric
'L\I Eccentric

\ .
0.48 b /1
1 5 \
. 4
0.44. _ .
1.00 1.05 1.10 115 B8

Figure 3. Variation of velocity component u_ with p at
maxirnum gap (¢ = 0) for bja= 1.2, £= 0.1 (y = -0.2467),
R=200, and q,/ q,= 0.75.
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Figure 4. Varation of velocity component u, with p at
maximum gap (¢=0) forb/a=1.2, e=0.1 (y =-0.2467),R=
200, and q,/ q,= 1.

the ¢ direction at the maximum gap (¢ = 0) for
different speed ratios (q,/q,) of the two cylinders.
Note that the speeds of the inner and outer cylinders
are q1 YI(1,¢) and q2 YT (B, ¢), respectively. A com-
parison of the profiles presented in each of these
figures emphasizes the importance of two-dimen-
sional effects when the cylinders are eccentric. Fig-
ures 5 and 6 show the composite pressure for the
maximum gap (¢ = 0) for different speed ratios of
both cylinders, along with comparison of other solu-
tions. As these figures show, the trend of the compos-
ite pressure is as the intersection of an outer and inner
solution which is expected. This trend can be seen
directly in the result of Reference 4, but only for the
first-order accuracy. This result is also compared
with the second-order result here. Work of Szeri, et.
al [9] in the area of approximations in hydrodynamic
lubrication is one of the most recent studies which
calculates the pressure in flow between rotating cylin-
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Figure 5. Variation of composite pressure with p at maxi-
mum gap (¢=0) forb/a=1.2, e=0.1 (y =-0.2467), R=200,
and q,/ q,= 0.75.
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Figure 6. Variation of composite pressure with p at maxi-
mum gap (¢=0) forb/a=1.2, e=0.1 (y =-0.2467), R=200,
and q,/ q,= 1.0.
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ders using a numerical approach. As Figures 5 and 6
show, the results of Reference 9 have been compared
with our analytical results for pressure which is very
much agreeable, At the same time, a comparison of
the second-order and first-order results reveals the
effect of two-dimensionality while proves its superi-
ority over the first-order results.

Animportant issue to be noted is that as discussed
in Reference 7, the method of expanding the stream
function as a series in Y cannot be expected to hold for
large Reynolds numbers ifthe outer cylinderis atrest.
The reason for this may be seen by referring to the
boundary layer approximation. If the series were
valid and a boundary layer existed on the outer
cylinder, the speed of the inviscid flow at the outer
cylinder would be expected to be O(y q,). The
thickness of the boundary layer there would then
be O(y "2 R*'2), Thus for a given value of y and a
Reynolds number much greater than 1/y (anecessary
condition for the boundary layer to exist), the flow
quantities of the boundary layer would not be ana-
Iytic functions of y. A similar objection would apply
if the inner cylinder were at rest. That is why we as of
Reference 7 have assumed that neither cylinder is at
rest. We have also supposed that the cylinders rotate
in the same sense. With this provision, the speed of
the unperturbed flow does not vanish at any point of
the fluid and some simplification thereby results in
the behaviour of large overall Reynolds numbers.

CONCLUSION

An analytical investigation of a steady, incompress-
ible and viscous flow between two eccentric, rotating
cylinders at high Reynolds number using singular
perturbationmethod up to second-order accuracy has
been presented. Our main goal has been to calculate
second-order pressure in terms of elementary func-

tions to compare with already obtained numerical
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results as well as first-order results. We have acheived
this goal by following the work of Wood [7] and
introducing a modified bi-polar coordinate system.
We have dealt with two small perturbation param-
eters, the eccentricity and inverse of the Reynolds
number, causing a singular perturbation theory treat-
ment. The flow quantities have been expanded in
powers of the inverse of Reynolds number which is
different from other works and handled a singular
perturbation problem in the form of inner and outer
expansions, Reference 11. Comparison of our results
with first-order results reveals the effect of two-
dimensionality and at the same time proves its
superiority over them. It is important to note that
as of Reference 7, the problem of Taylor vortices
would not appear here since both cylinders are
rotating.

It is also important to note that in this problem we
did not have to go through doing asymptotic match-
ing formally, as of Reference 4. Although the trend of
our composite solution was the same as that of this
reference, the composite solution in our work was
obtained by intersecting the outer solution with the
inner solution graphically. This is done to circumvent
going through the cumbersome procedure of Van

Dykes asymptotic matching discussed in Reference
11.

LIST OF SYMBOLS

inner cylinder radius a tangential velocity q
constant A polar coordinate r
outer cylinder radius b Reynolds number R
constant B vel. in bi-polar coord. u,
eccentricity e vel. in bi-polar coord. u,
function F,,P,, R, vel in polar coord. v,
complex number i=¥1  vel. in polar coord. v,
Jacobian J conformal transformation z
Pressure P
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Greek Letters

constant B vorticity function w
perturbation Y variable n
polar coord. 2} new variable ¢
constant é bi-polar coord. fol
efa £ bi-polar coord. 1]
kinematic coeff. w angular velocity Q
flow function v

Subscripts

1st. term of per. expansion 0 1 st. order approx. 10
2 nd. term of per. expansion 1 1 st. order approx. 11
3 rd. term of per. expansion 2 2 nd. order approx. 20
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