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Abstract The effect of sample size on the melting parameter of simulated potassium chloride microcrystal

is investigated by molecular dynamics simulation.

The size of microcrystal is varied from 8 to 4096 ions.

The increase in melting temperature with sample size was found to be in good agreement with the theory.
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INTRODUCTION

Although the structural differences between
crystals and liquids are well known, the actual
melting process whereby the structure of the
crystal is transformed into that of the liquid is
not completely understood, even for simple
substances. At various times a number of
mechanisms have been suggested for this pro-
cess, but no satisfactory theory of melting
exists. From purely thermodynamic con-
siderations, the fundamental thepry of melting

can be summarised as:

T P, P; Gg(P, T)=G(P, T).

‘The threc conditions correspond to thermal

equilibrium, mechanical equilibrium and Gibbs
free energy, and must have the same value in

the solid phase as in the liquid phase.
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Perhaps the oldest and best known melting
criterion is that of Lindemann [1]. This
assumes that a solid melts when the root mean
square amplitude of the vibration of the atoms
about their equlibrium positions in the lattice
reaches a certain fraction of the interatomic
spacing. The Lindemann law was generalized
by Ross [2] and when combined with the
Lennard-Jones and Devonshire cell model it
was successful in predicting the melting pro-
perties of rare gases and liquid metals [3, 4].
Another theory of melt'ing due to Born [5]
suggests that melting occurs when the rigidity
modulus vanishes. Also there has been con-
siderable discussion of a possible connection
between melting and the spontaneous genera-
tion of dislocations [6]. This theory identi-
fies the melting point with the ‘temperature

at which the free energy for thermal generation
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of dislocation becomes zero and the crystal
becomes saturated with dislocations, giving

rise to the liquid structure. The application of

these theories is not, however, an easy matter.

For example, it is not possible to make an
exact calculation even of such a basic para-
meter as the melting temperature starting
from a given interatomic interaction force.
In practice there may be further complications
because the interactions are known only in
terms of a set of effective potentials derived
from static properties, and these may not be
adequate when thermal motions are involved.
For more information about the subject we
refer the reader to the book by Ubbelohde
[7].

The experimental study of melting is dif-
ficult because it is an extremely rapid process
so that structural changes cannot easily be
followed through the melting transition.

On the other hand the method of molecular
dynamics, MD, simulation is very suitable for
the study of melting. In this method the
crystal is simulated in a computer experiment
in which the trajectory of each individual atom
is_determined from its interactions with the
other atoms in the sample. Thus a suitable
known interatomic potential can be used and
its parameters varied. The structure of the
sample can be followed through the transition
and experimentally inaccessible ranges of the
macroscopic parameters can be used. The
disadvantages of the method are that only a
limited number of particles can be simulated
and the sample must be heated very rapidly
compared with physically realisable rates.
Much valuable information on the melting
transition has been gained from computer
simulation, particularly in the range of tem-
peratures and pressures which cannot easily
be reached in laboratory experiments.

The method has been applied to hard-sphere
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by Hoover et al. [8-10]. The melting pro-

perties of the Lennard - Jones system have
received the most study, for both two and three
dimensional systems. In these studies both
microcrystal and pseudo-infinite systems (see
Sec. 2) are used for computer simulation
(6, 11-13].

The melting of ionic systems was also
studied by molecular dynamics simulation.
Hockney and Goel [14] have conducted an
MD simulation of a two dimensional KCI
Woodcock et al. [15] applied

the method for three dimensional KCl in a

microcrystal.

triple periodic system. Amini et al. [16-18]
simulated several ionic microcrystal systems
to understand the effects of various para-
meters of the interatomic potential on the
melting of 512 particles microcrystal.

We discuss in Section 2 different methods
of melting simulation and in Section 3 the
results of some MD simulations of KCl micro-

crystal are given.

METHODS OF SIMULATION

The history of molecular dynamics began
when Alder and Wainwright [19, 20] re-
ported their computations on hard - sphere
fluid. MD is a computer-based technique for
modeling fluids, crystals and glasses at micro-
scopic levels of distance and time. This kind
of computer simulation is now well established
and many excellent review articles and books
have appeared in recent years which describe
the MD simulation [21-25] therefore we con-
fine our discussion to those aspects which are
related to MD simulation of melting.

In an MD study a system of N particles
is placed within a box, generally a fixed
volume cube, called the calculation box. A
set of velocities is assigned in such a way that

the average kinetic energy of the particles in
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the system gives the desired temperature,
while the net linear momentum is usually
chosen to be zero. Mathematically the model
is described by giving the law of force between
each pair of particles and stating that the
particles move according to Newton’s laws of
motion under these forces. The equations
of motion of particles are integrated numeri-
cally [26] and from the positions and the
velocities of the particles at each timestep
both the static and dynamic properties of the
system can be calculated accurately.

The bulk of computational effort in MD
simulation is concerned with the calculation
of force at each step. If all the interactions
of N particles are individually calculated the
number of floating-point computer operations
in each step is proportional to N2, Thislimits
N to a few hundred even on the fastest com-
However it is
possible to use a faster method, like
P-P/P-M of Hockney et al. [27], and increase

the number of particles in the simulated

puters currently available.

system to a few thousand. Even with such
fast methods the number of particles in a
simulated system is far below the number in a
real system ("'103 compare with ~1023).
This makes the model much smaller than any
physical system which can be studied in the
laboratory. To simulate the properties of a
bulk system more closely periodic boundary
conditions are usually imposed. By periodic
boundary conditions we mean that the cal-
culation box is surrounded by an infinite num-
ber of images. Each image is a box, exactly as
the calculation box, containing N particles
When a
particle leaves or enters through one face of

with the same relative positions.

the calculation box an image particle will
enter or leave a neighbouring box through the
opposite face to balance the move.

The imposition of periodic boundary con-
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ditions produces an infinite system of particles,

without any surface, which arrange periodi-
cally. In a melting simulation we are either

interested in the structural change of the

crystal while it melts or in the thermody-

namical properties such as, melting tempera-

ture, latent heat, entropy of melting, volume

change due to melting, change in the specific

heats, etc. In each case the simulation starts

from a crystalline structure, at a temperature

below melting point, and subsequently heats

the crystal until it melts. For certain measure-

ments the liquid should be heated until it

reaches a temperature well above the melting

point. The expansion (or pressure) caused by
the heating and melting transition makes the
melting simulation more difficult than the
simulation of liquids or solids at a constant
temperature inwhich the volume of calcula-
tion box is fixed.

To overcome the problem of expansion and
lack of surface in an infinite system we show,in

Figure 1, some alternative methods for initial

Liquid I:! Empty

' Crystal

‘Figure 1. Schematic illustration of four different
ways of filling the two dimensional calculation box
with particles.
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filling of the calculation box with the particles.
In method A the whole calculation box is
filled with particles and the periodic images
surrounding the box make the system a
pseudo-infinite one. If the box side is kept
constant during the simulation, the change in
the pressure is ehormous, and simulation is a
constant volume experiment. In order to
simulate the usual physical conditions at

constant pressure the box may be expanded
with an increase of temperature,as suggested by
Berendsen et al. [28],or the alternative way of
constant pressure simulation as described in
part 11 may be used. Method B is a partially
filled box with periodic images. Compared
to A this method has the advantage of con-
taining a surface, which might be important
for melting study, but the main problem of
pressure still remains. In method C an isolated
microcrystal, with free surface all around it,
is set up in the centre of the calculation box.
The free surface allows the crystal to expand
while remaining at zero pressure and no time
is spent on adjusting the box length. Although
in this case the system has a surface, the ratio
of surface particles to the total number of
particles is very high compared with any
realisable physical system. Finally, in method
D a microcrystal is placed in the calculation

‘box surrounded by liquid of the same sub-
stance and some space is left in the box to
allow for expansion.

In the next section we report the results
of melting simulations using method C (micro-
crystal melting), and in part II the melting of
KCl crystal is discussed when method A of
initial setting is used.

MELTING OF MICROCRYSTAL AND
SAMPLE SIZE EFFECTS
To determine the effect of microcrystal size
on the melting parameters we have performed
three KCl simulations with 8, 64 and 4096
ions respectively. The interaction pair-force
in these simulations is exactly the same as the
previous simulation with 512 ions[16].It con-

tains two terms, coulombic and inverse power
repulsion. The force of interaction between

a pair of ions at separation ry; is:

Fuifr)=( € 1 7Si+sj 8 -

Fij(r)=( ——) 5~ [£1+( ) (1)
\41r60 r

‘Where i, j =+, —. The sign of the first (cou-

lombic) term is positive for like ions and
negative for unlike ions. The parameter s is
proportional to the ionic radius. This form
of potential has the advantage of being scal-
able and simple to analyse theoretically, while

‘Table 1. Values of the initial parameters for three different sized KCl microcrystal simulations.

PARAMETERS I Il - 11 UNITS
number of particles, N 8. 64 ‘ 4096 :
timestep, DT 7.5 7.5 75 fs
radius ratio, s /s_ 0.73 0.73 0.73
heating cycle, NS8 600 400 200 DT
averaging over, NS9 96 64 32 DT
initial temperature, TDKO 100 100 400 K
heating factor, HTFAC 1.001 1.001 1.002
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retaining the essential features of a condensed
ionic system. In the present simulations all
the parameters of the potential are the same as
previous one [16], but the number of particles
are varied. These are summarised in Table 1.

The calculation box is a cube and in each
case a cubic N particles (N/2 cation and N/2
anions) microcrystal with the Sodium chloride
crystal structure was placed in the middle of
the box.

The time integration of Newton’s laws of
motion was conducted by using the leapfrog
scheme [26]. The timestep, DT, was chosen
to be about onesixteenth of the period of
oscillation of a typical ion in the crystal.

In each simulation the ions were initially
given a Maxwellian velocity distribution cot-
responding to an initial temperature, TDKO,
and the temperature was held at this value by
scaling the velocities in-each timestep for 200
steps. This was followed by 800 timesteps in
which the velocities were not scaled. The
microcrystal was then subject to cyclic heating
with a period of NS8 timesteps. At each of
the first 25 steps the system was heated by
multiplying each velocity by a factor, HTFAC.
The system was then allowed to equilibrate
for the remaining steps of the cycle. The
total energy and the temperature of the system
were averaged over all particles and the last
NS9 steps of the cycle.

All three simulations, including 8 ions
system which is the smallest cubic micro-
crystal which ‘can be set-up with a rocksalt
structure, show the features of melting quite
clearly. After heating the cubic microcrystals
they were melted to form roughly spherical
liquid droplets. The melting was characterised
by:

(a) Discontinuity in the total energy at the
melting point and an increase in the specific

heat after melting.
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“(b) A loss of long-range order on melting, and

a decrease in the coordination number from
six to about four.

(c) Thermal expansion of the crystal before
melting and a decrease in the density on
melting.

(d) The onset of diffusion at the surface of
the crystal slightly below the melting tempera-
ture and throughout the system at the melting
temperature (except for 8 ion system which all
particles are on the surface of the micro-
crystal).

Figure 2 shows the graph of total energy
against temperature of 4096 particle simula-
tion. The crystal is heated from point A to B,
melts between B and C, and the liquid is
heated from C to D. The values shown in this
figure are the results obtained at the end of
each heating cycle. A clear first order phase
change occurs between the point B and C
from which the melting point, Tf=T(B or C),
and latent heat, L=U(C)—U(B), are obtained.
The specific heats for solid and liquid are
obtained from the slope of the lines AB and
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Figure 2. Variation of internal energy per pam'qle,
U, with temperature, for 4096 ions system, showing

a first order transition at Tj‘ The origin of U is
arbitrary.
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'CD. Values of melting temperatures, latent
heats and specific heats are given in Table 2
together with the physical values for the bulk
stystem.

The accumulated values of the average
mean square displacements (MSD), for 4096
ion system, for the last 100 timesteps of the
heating cycle, are shown in Figure 3. Each
point represents the result obtained at the
end of a heating cycle. Although for practical
reasons the number of timestepsin which
the MSD is accumulated is limited to 100,
the variation of MSD with T for the solid and
the liquid is a smooth curve clearly showing
the melting transition. The accumulated
MSD’s averaged separately over each kind of
ions show that the values for the Clions (larger)
are about four percent lower than for K ions.
To study the diffusion of the system we
examined the plot of MSD’s versus timestep
for the last 100 steps of each cycle.In the solid
the MSD increases for a few steps and then
stays constant, this behaviour being charac-
teristic of vibrational motion. In the liquid
the MSD increases linearly with time in-
dicating diffusion. A careful examination
of Figure 3 shows that the accumulated
MSD increases noticeably at a temperature
some 90°K below the melting point. By
examining the neighbours of all the ions,

‘Table 2. Scaled results of melting parameters
7 for four KCl microcrystal simulations.

N 8 64 512 4096 Physical
To(nm) 0-260 0.260 0.260 0.260
Te(K) 753 816 950 990 1045
Le(K) 620 1032 1240 1342 1580
Cpsolid 3.40 3.35 324 315 3.03
Cpliquid 3.45 3.64 414 420 4.03
S¢ 0.82 1.27 1.31 1.35 1.51
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from the time of initial setting of the micro-

crystal till the end of melting, we found
that at this point the ions at the surface of
the microcrystal began to change their neigh-
bours (diffuse).

The radial distribution functions, RDF,
for like and unlike ions were also obtained at the
end of each heating cycle. For this the average
is taken over the last 10 steps of the heating
cycle and only the ions in a middle cube are
taken as centre (see Figure 4). From these
distributions the nearest neighbour’s distance
(position of the first peak of unlike ions RDF)
and the coordination number (number of ions
surrounding an ion out to a cutoff radius which
is chosen close to the first minimum of RDF)
are measured. At melting the average coordina-
tion number of the system suddenly drops
from six to about four and the nearest neigh-
bor’s distance also decreases.

The density of the system was measured
from the accumulated values of RDF up to a
distance r. By using this method we are
including all the particles in spheres with
radius r and centres inside the middle cube.

This method is more accurate than time

MSD T T T T
B /
o
6 |- VA
o
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4 } ci? ° .
[
3 | |
P
- |O —
of
| ot _
007
9 | | | |

400 600 800 1000 1200 T(K)
Figure 3. Average mean square displacement after

100 timesteps as a function of temperature for 4096
ion KCl.
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averaging the number of particles in the
middle cube, because more particles are taken
into account for the calculation, but more
weight is given to the central particles. The
results are more accurate for larger r, but r
must not exceed a maximum value r =
(1S — lm)/2. In which ls and Im are the sides
of the system and the middle cube. In Figure
4 a schematic picture of this method is shown
in two dimensions and it is obvious that if a
particle near the surface of the middle cube is
chosen as a centre with radius &> r,, the total
volume of this sphere is not filled with par-
ticles, For 4096 ion simulation Iy s almost
1.5 nm, so the plot of number density cal-
culated in this way for values of r equal to
0.8, 1.2 and 1.4 nm as a function of tempera-
ture are shown in Figure 5. All these plots
show a decrease in number density with in-
creasing temperature and a sudden drop on
melting. The liquid part of these plots gives
almost the same variation of density with
temperature but for the solid the measurement
with r=1.4 nm gives the lowest density which
might be due to the spacing of the ions in
the microcrystal and the choice of r. The

reduction in number densities in the melting

Figure 4. Schematic method of density measurement
from the accumulated values of RDF in two dimen-
sions.
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7Figure 5. Plots of number density as a function of

temperature obtammed from the accumulated values
of RDF up to (a}) 0.8 nm, (b) 1.2 nmand (c) 1.4 nm.

([d(solid)-d(liquid)] /d(solid)) obtained from
these plots are 0.30, 0.29 and 0.26 for r equal
0.8, 1.2 and 1.4 nm respectively. The values
are within the physical values measured for
alkali halides but they are about 1.5 times
higher than the physical values for KCL

DISCUSSION

As the interaction force of Equation 1 is scalable
[23] all the results obtained in these simula-
tions are scaled in sucha way that rg=S4;+8_=
0.260 nm. This value of r( gives the correct
physical lattice separation for the crystal at
room temperature. The scaled values are
given in Table 2. To make the comparison
easier the results of the 512 ion simulation
[16] and the physical bulk system values for
KCl also are given.

The results show by increasing the size of the
simulated system the melting temperature,
latent heat and entropy of melting increase.
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The increments are towards the physical
values of the bulk system. The melting tem-
perature and latent heat depression of two
and three dimensional microcrystals have been
observed in several MD simulations [14, 29].
Also there are several experimental and theore-
tical results which show that the melting
temperature decreases with decreasing radius
[30-36].

The specific heat of liquid is higher for a
But Cp of the solid decreases

with increasing microcrystal size. This is to

larger droplet.

be expected as a smaller microcrystal has a
relatively higher number of surface particles
and the surface ions, lacking a full set of
neighbours; are in a sense, already partly melted.
The specific heat of a microcrystal is expected
to lie between the physical large-crystal and
the liquid values and decreases with increasing
microcrystal size. This is also observed (Table
2).

To show the effect of sample size on the
melting temperature of simulated microcrystal
we plot our results in Figure 6. In this figure
the values of Tg for four different sized KCl

microcrystal versus number of ions on each

TK,
100
T? -
000 |- /5,_-
900 |-

800 »—§/

700 ~/

Figure 6. Variation of melting temperature of four
KCl microcrystals as a function of number of particles
on each side of the cubic microcrystal, l. The
theoretical formula, Eq. (3), is shown as a continuous

line,

] [ ] | |
16 20 &
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7 Tf/ Tf 0=

side of the cubic microcrystal are plotted.
Couchman [36] in his calculation, based on
the Lindemann hypothesis of melting, relates
the melting temperature of a microcrystal
(Tg) with the bulk system melting point
(Tf0) by the following formula:

/

1
el 218 P sy,

Tf/Tf(): 1 1
1+(n/6) 13/ 8v 13 *(3/V)

'In which v is the volume per particle and S and

V are the surface and volume of the micro-
crystal respectively. For a cubic microcrystal
with 1 particles on each side and the lattice
separation a, we have v1/3=3, $=6(la)2 and
v=(la)3.  Therefore Equation 2 becomes

] ! 2
+6/8%(xf6) /31 (&

+6/8%(n/6) 3

To compare our simulation results with
Couchman'’s theory, Equation 3 is plotted in
Figure 6 in such a way to pass through the
4096 ion melting point. The agreement
between the theory and simulation results
seems very good although no extra care is
taken in the theory to include the line or
point effects arising from the cubic shape of the
system.  Melting temperature of the bulk
system calculated from Equation 3 by using
T¢ of 4096 ion system gives Ty 0=1063+11 K
which is higher by a small amount from the

physical value of 1045 K measured for KCl.
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