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A B S T R A C T  
 

 

Dynamic parameters are the most important geotechnical data used to understand the behavior of soil 
media under dynamic loads and to recognize the seismic response of the soil. Several in-situ and 

laboratory geophysical tests, such as the down-hole test, are used to determine these parameters. Since 

this experiment is costly and time-consuming and the preparation of appropriate boreholes is not easy, it 
is preferable to estimate the results of this test with the help of empirical correlations or experimental 

models. The main output of the down-hole test is the shear wave velocity (VS) of soils, which can be 

used to obtain the dynamic shear modulus (Gs) indirectly. The relationship between physical properties 
and mechanical specifications of soils is a well-known principle of geotechnical engineering. Utilizing 

the results of 19 down-hole experiments and available geotechnical data in the southern regions of 

Tehran, as well as the inputs of an adaptive neuro-fuzzy inference system (ANFIS). This study attempts 
to provide practical models to predict shear wave velocity of fine-grained soils in Tehran. Two new 

models have been proposed as a result of preprocessing and smart modeling. The independent variables 

of the first suggested model included the moisture content, plasticity index (PI), liquid limit (LL), depth 
of test, and grain size distribution of soils. In the second model, the number of standard penetration test 

(NSPT) is also used in addition to the mentioned independent variables. The proposed models had 

coefficients of determination (R2) of 0.74 and 0.8 for the total training and validation data, respectively. 

doi: 10.5829/ije.2024.37.06c.13 
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1. INTRODUCTION 
 

Dynamic modulus (shear and Young's modulus) as a 

significant parameter in geotechnical analysis and 

especially seismic design of structures can be obtained by 

determining the shear wave velocity of soils. Down-hole 

test (1) is one of the most well-known geophysical tests 

used to determine the shear wave velocity of soils. This 

test is costly and time-consuming. Preparing appropriate 

boreholes is another challenge in performing this test. 

Also, some variables may influence the results. Due to 

the mentioned limitations, it is helpful to predict the 

results of this test by using empirical correlations or 

models.  

Typically, using new artificial intelligence (AI) methods 

to solve complex multivariate problems leads to better 

outcomes compared to conventional regression methods. 

In recent years, researchers have utilized various AI 

methods to predict the results of geotechnical (2-9) and 

geophysical (10-12) tests. 

In this regard, Table 1 summarizes the most important 

AI models available to predict the shear wave velocity 

obtained from in-situ tests. This table shows that despite 

numerous studies in this field, a comprehensive and 

acceptable model has not been yet proposed. Therefore, 

it seems that there is still a necessity for new models or 

relationships for different regions to predict the shear 

wave velocity of soils. 

Due to the access to geotechnical data of several 

projects in which both conventional geotechnical tests 

and down-hole tests were performed, it was possible to 

prepare a considerable amount of data that can be cited 

for this research. Then, it was attempted to apply the 

ANFIS method to introduce new practical models to 

predict the shear wave velocity of fine-grained soils in 

Tehran. It should be noted that the models developed in 

this research are different from the models of other 

researchers in terms of input variables, modeling method 

and applied data. 

 

 

2. METHODOLOGY   
 

In AI techniques for nonlinear multiple analysis, data sets 

are divided into two different sets of training and testing. 

The training data set is used to find the potential 

relationship between independent and dependent 

variables, and the reliability of this relationship is 

verified with the testing data set (13). Artificial Neural 

Network (ANN), Fuzzy, and Neuro-fuzzy are some 

examples of the widely used methods.  

The ANN method can find the relationship between 

the input and output variables of a complicated problem 

with the help of self-learning ability. The performance of 

artificial neural networks is directly related to the given 

amount of training data (14). When the number of data is 

low, neural networks and fuzzy logic combinations 

(neuro-fuzzy) can improve the performance of the neural 

network system (15). A fuzzy system can simulate the 

qualitative aspects of human knowledge and reasoning 

processes, whereas it does not have any self-training 

abilities. Nevertheless, ANNs can do learning using data 

sets (16, 17). Then, ANFIS has the advantages of both 

neural networks and fuzzy systems (18). The main 

purpose of the ANFIS approach is to automate fuzzy 

modeling using real data. In the fuzzy Takagi-Sugeno 

method, the following If-Then rules apply:   

If x=A1 and y=B1 then  f1(x,y)=p1x+q1y+k1 (1) 

If x=A2 and y=B2 then  f2(x,y)=p2x+q2y+k2 (2) 

where x and y are the inputs, Ai and Bi are labels of the 

fuzzy set (small, large, etc.) defined as suitable 

membership functions, and pi, qi, and ki are output 

parameters resulting from the training. The process of 

ANFIS performance contains five steps (layers). The 

schematic structure of this method is displayed in Figure 

1. 
 

2. 1. ANFIS-FCM               The ANFIS model developed 

in the present study is based on the fuzzy clustering 

method (FCM). Fuzzy C-Means is an approach of data 

clustering in which a given dataset is grouped into some 

clusters according to the principles of the fuzzy C-

partition. The introduction of this algorithm is 

generalized by Ming-Chuan and Don-Lin (19). In this 

algorithm, each data can belong to one or more clusters 

(groups) in soft fuzzy clustering, and the data closer to 

the center of a cluster has a higher degree of membership 

(20). 

The coefficient of determination (R2), Mean Absolute 

Error (MAE), and Root Mean Squared Error (RMSE), 

which are shown in Equations 3 to 5, are selected to 

assess the model. 

 

 
TABLE 1. Summary of the some suggested AI models to predict VS 

Case study Model Ranges of VS (m/s) Method Reference 

A database from 10 different countries 𝑉𝑆 = 𝑓(𝑁60, 𝜎′) 66-169.66 PNN (21) 

Urmia City, Iran 𝑉𝑆 = 𝑓(𝑁60, 𝜎′, 𝐹𝐶, 𝑃𝐼, 𝑑50) 82-566 GRNN (22)  

Mashhad City, Iran 𝑉𝑆 = 𝑓(𝐷, 𝑁𝑆𝑃𝑇 , 𝐹𝐶) 202-850 ANN-BP (23)  
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Figure 1. The process of ANFIS performance; (a) the first-

order fuzzy model (b) schematic structure of ANFIS (16, 24, 

25) 
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In these equations, ai is the real values (targets) of the VS, 

p is the predicted VS, �̅� is the average of the actual VS, �̅�  
is the average of the predicted VS, and n is the number of 

data sets. 

 

2. 2. Sensitivity Analysis Method           In the current 

study, a sensitivity analysis method of single variable 

training was used to identify the relative importance of 

inputs on the outputs of ANFIS-FCM models. The 

optimum ANFIS model is trained separately for each 

variable and then tested again in this technique. It should 

be noted that the optimal parameters obtained in the final 

model (including the type of membership function, the 

number of rules, the method of optimization, and the 

number of iterations) are also maintained in this step. 

Finally, any model which predicted outputs closer to the 

actual values (target) or, in other words, had the highest 

coefficient of determination, was introduced as the most 

effective variable [25, 26]. 

Figure 2 illustrates an overall strategy and main steps 

performed to achieve the purpose of the current study. It 

should be noted that in primary analyses of this study, 

ANFIS had a better performance in comparison with 

ANN method, therefore, only the results of ANFIS 

models are mentioned in the following.  
 

 

3. DATA COLLECTION 
 

In Tehran, geologically, from north to south of the city, 

the percentage of coarse aggregates is almost reduced, 

and the southern regions are mainly composed of fine-

grained clayey soils. This study used the findings of 19 

study projects in different regions of southern Tehran. 

The fine-grained soils include CL, ML, CH and CL-ML. 

It should be noted that in all these projects, the same 

equipment and technicians were employed, as well as the 

method presented in ASTM-D7400 (1). As previously 

described, shear wave velocity is the most important 

direct output of down-hole test, which can determine the 

dynamic moduli of soils. In all boreholes in which down-

hole test was performed, disturbed and undisturbed high-

quality samples were taken and all conventional 

geotechnical laboratory tests were performed on the 

samples. Besides, the standard penetration test (SPT) was 

performed by ASTM-D1586 (26) in almost all depths 

where the shear wave was recorded.  
 

3. 1. Effective Parameters on the Down-hole Test       
To accurately determine particle size, the percentage of 

different soils has been obtained through ASTM-D422 

standard (27). By expressing the percentage of different 

soils, it is possible to make a good judgment of the type 

and initial characteristics of the materials. The desired 

properties of soils also included moisture content (w), 

liquid limit (LL), and plasticity index (PI) that have been 

determined through ASTM-D2216 (28) and ASTM-

D4318 (29) standards, respectively. 

Regarding the compaction condition of the tested 

soils, two indices of depth and number of standard 

penetration tests (NSPT) were considered. In general, the 

density of soils increases with increasing depth. Standard 

Penetration Test (SPT) is one of the most common, 

inexpensive, and simplest geotechnical in situ 

experiments that can be utilized to determine soil 

compaction. In principle, this test is utilized to determine 

the relative compaction of soils. Therefore, considering 

that the depth of the test section and NSPT can be easily 

determined, these two parameters were selected as the 

basic parameters to ascertain the compaction of soils. 
 

3. 2. Preprocess of Independent and Dependent 
Variables            Several different models were developed 

to investigate the relationships between independent 

variables and shear wave velocity in this section. To this 

end, several different data sets of fine-grained soils were 

evaluated. The two final models (relationships) were 

considered according to Table 2. It should be noted that 

these models are selected after several statistical analyses 

and data processing.  

Independent variables related to the first data set (No. 

1) included the percentage of soil particles (clay, silt, 

sand, and gravel), depth of test, liquid limit, plasticity 

index, and moisture content. The range of variation of 

these data were summarized in Table 3. The best simple 

regression between shear wave velocity and the 

independent variables is also displayed in Figure 3. 
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Figure 2. Overall strategy and main steps of the current study 

 

 
TABLE 2. Proposed models obtained from preprocessing of data 

Number of data sets Equation/model No. 

275 𝑉𝑆 = 𝑓(𝐷, 𝐺, 𝑆, 𝑀, 𝐶, 𝑃𝐼, 𝐿𝐿, 𝑤) 1 

126 𝑉𝑆 = 𝑓(𝐷, 𝐺, 𝑆, 𝑀, 𝐶, 𝑃𝐼, 𝐿𝐿, 𝑤, 𝑁𝑆𝑃𝑇) 2 

 

 

Parameters: 

VS (m/s): Shear wave velocity 

D (m): Depth of test 

G (%): Gravel-grained content 

S (%): Sand-grained content 

M (%): Silt-grained content 

C (%): Clay-grained content 

PI (%): Plastic Index 

LL (%): Liquid limit 

w (%): Moisture content 

NSPT: Uncorrected SPT blow counts 
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TABLE 3. Ranges of soil parameters for the first data set 

Parameter 
Depth 

(m) 

Gravel 

(%) 
Sand (%) 

Silt 

(%) 

Clay 

(%) 

Liquid 

limit (%) 

Plastic 

index (%) 

Moisture 

content (%) 

Shear wave 

velocity (m/s) 

Min 2 0 0.10 18.40 16.90 21 2 5.40 130 

Max 38 34.30 49.40 60.10 69.20 72 41 34.90 598 

Mean 15.93 3.28 13.60 41.85 41.25 38.40 17.02 20.68 382.25 

Standard deviation 8.43 4.97 11.43 8.02 10.56 9.84 7.08 5.19 104.78 

 

 

 
Figure 3. The best simple regression between dependent and the independent variables for the first data set 
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Independent variables related to the second data set 

(No. 2) includes the percentage of soil particles (clay, silt, 

sand, and gravel), depth of test, liquid limit, plasticity 

index, moisture content, and NSPT. The range of 

variations of these data are presented in Table 4. Existing 

values of NSPT indicate that the relative density of soils 

ranged from soft to hard. The optimum simple regression 

between VS and the mentioned independent parameters is 

also illustrated in Figure 4. 

 

 

TABLE 4. Ranges of soil parameters for the second data set 

Parameter 
Depth 

(m) 

Gravel 

(%) 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

Liquid 

limit (%) 

Plastic 

index (%) 

Moisture 

content (%) 
NSPT 

Shear wave 

velocity (m/s) 

Min 3 0 0.90 18.40 16.90 21 2 8.60 7 130 

Max 36 20.80 47 58.70 65.80 65.80 36 3480 65 688 

Mean 10 6.62 5.45 48.40 39.52 39.52 15.50 20.45 34.75 318.25 

Standard deviation 3.05 5.14 3.01 3.34 3.97 3.97 4.04 1.58 5.51 27.42 

 

 

 
Figure 4. The best simple regression between dependent and the independent variables for the second data set 
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4. MODEL DEVELOPMENT TO PREDICT SHEAR 
WAVE VELOCITY 
 
4. 1. The Optimum Model for the First Data Series       
The settings relevant to the best structure of the ANFIS-

FCM model, which includes the number and type of 

membership functions (MFS), the training algorithm, and 

the number of iterations, are obtained based on the trial 

and error approach. The available data sets were 

randomly divided into training data (220 data sets) and 

test data (55 data sets). After completing the learning 

phase, the final model was validated. The specifications 

of the most appropriately designed ANFIS model are 

given in Table 5. The constructed structure consists of 

five layers and three if-then rules that are connected by 

the "and" operator (Figure 5). The results and the 

suggested model determination coefficient graph for the 

two training and testing stages are indicated in Table 6 

and Figure 6, respectively. 

Then, with the mentioned sensitivity analysis method, 

the effect of each independent variable was investigated 

separately for the performance of the designed ANFIS 

model. As shown in Figure 7, the depth of test and the 

percent of sand-grained content were the most effective, 

and the variables of liquid limit and plasticity index had 

the least impact on the performance of the optimum 

model. 

 

 
TABLE 5. Main parameters for the optimal ANFIS-FCM 

model  

Type/value Parameter 

3 Number of MFS 

Gaussian Input MF 

Linear Output MF 

Hybrid Optimization method 

3 Number of rules 

100 Epoch 

 

 

 
Figure 5. Optimal ANFIS-FCM structure for the first model 

 

 
TABLE 6. Results and error values of ANFIS-FCM model for 

training, testing, and all data sets 

RMSE MAE R2 Data 

52.69 40.09 0.75 Train 

59.61 48.04 0.73 Test 

54.19 42.34 0.74 All 
 

 

 

 
Figure 6. The obtained determination coefficients from the first model 

 



 

 
Figure 7. The results of sensitivity analysis on independent 

variables 

 
 
4. 2. The Optimum Model for the Second Data 
Series                The same as previous step, the settings 

relevant to the optimum structure of the ANFIS-FCM 

model, which contains the number and type of 

membership functions (MFS), the training algorithm, and 

the number of iterations, are determined. The available 

data sets were randomly divided into training data (101 

data sets) and test data (25 data sets). The specifications 

of the developed model are given in Table 7. The 

structure of the optimum model is illustrated in Figure 8. 

The results and the proposed model determination 

coefficient graph for all stages are indicated in Table 8 

and Figure 9, respectively.  

Using the mentioned sensitivity analysis method, the 

effect of each independent variable was investigated 

separately to evaluate the performance of the designed 

ANFIS model. As shown in Figure 10, the depth of test 

and the percentage of sand-grained content have the most 

effect, and the variables of liquid limit and moisture 

content have the least impact on the performance of the 

optimum model. 

 

 

TABLE 7. Main parameters for the optimal ANFIS-FCM 

model  

Type/value Parameter 

2 Number of MFS 

Gaussian Input MF 

Linear Output MF 

Hybrid Optimization method 

2 Number of rules 

100 Epoch 

 

 

 
Figure 8. Optimal ANFIS-FCM structure for the second 

model 
 

 

TABLE 8. Results and error values of ANFIS-FCM model for 

training, testing, and all data sets 

RMSE MAE R2 Data 

55.94 41.95 0.79 Train 

51.57 37.91 0.82 Test 

54.95 40.91 0.8 All 

 

 

 

 
Figure 9. The obtained determination coefficients from the second model 

M. Khanmohammadi and S. Razavi / IJE TRANSACTIONS C: Aspects  Vol. 37 No. 06, (June 2024)   1164-1174                        1171  



 

 

 
Figure 10. The results of sensitivity analysis on independent 

variables 
 
 
5. RESULTS AND DISCUSSIONS  
 

The obtained results from the two final ANFIS models 

are presented in Table 9. In general, both models can be 

roughly similar in terms of correlation and error values. 

For the whole first data series, the coefficients of 

determination and the mean absolute error are 0.74 and 

42.34, respectively. Also, For the whole second data 

series, they are 0.8 and 40.91, respectively. It is worth 

mentioning that this study is the first attempt to use 

neuro-fuzzy to predict Vs; therefore, there are some 

limitations to compare the results of the current study and 

other studies using the same database. Moreover, the 

proposed models have two advantages compared to 

previous studies. The first one is that more independent 

variables in this research make the final performance of 

the models less affected by one or more data. In other 

words, the possible error in the values of one of the data 

will not affect the output of the model. Typically, smart 

models that have this feature are also called robust 

models. Another advantage of this research (related to the 

first data) is that SPT results are not required to estimate 

the shear wave velocity of soils. It should be noted that 

according to the obtained results, the model presented for  

the second series data was superior model of this study. 

 

 
TABLE 9. Comparison between the results of the first and 

second proposed models 

Model  No. 1 No. 2 

Data Train Test All Train Test All 

R2 0.75 0.73 0.74 0.79 0.82 0.8 

MAE 40.09 48.04 42.34 41.95 37.91 40.91 

 
 
6. CONCLUSIONS 
 
In this study, two series of data, with different numbers 

and variables were employed to develop new smart 

models to predict the shear wave velocity of the fine-

grained soils. The most important results of this study are 

as follows:  

• Considering the diversity of the studied soils, the 

results and suggested models can be evaluated as 

acceptable for most fine-grained soils in Tehran 

while considering the range of data changes. It is 

evident that the scope of application of the smart 

models proposed in current research is only relevant 

to the data used; therefore, these models need to be 

evaluated and validated again for new data.  

• The performance of the proposed model for the 

second data (No. 2) has been slightly superior to the 

data model in terms of the coefficient of 

determination and error values. Determination 

coefficients obtained from ANFIS-FCM models for 

the whole data set numbers 1 and 2 were 0.74 and 

0.8, respectively. Also, the choice of the FCM 

clustering method for making ANFIS models has 

simplified fuzzy rules and model structure. 

• According to the preprocessing and sensitivity 

analysis performed on the optimal ANFIS models, 

the depth at which the test has been implemented, the 

percentage of sand-grained content, and NSPT had the 

most influence on the shear wave velocity values. 

• Due to the problems of the down-hole test (high cost, 

being time-consuming, and the requirement for a 

specialized operator) as well as the accuracy of 

proposed models, they can be used for the initial 

estimation of VS and consequently, to determine the 

dynamic moduli of fine-grained soils. Obtaining the 

input variables considered for these models is simply 

possible in all geotechnical studies. 
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Persian Abstract 

 چکیده 
برای تعیین این پارامترها از   باشند.ای خاک میهای ژئوتکنیکی برای درک رفتار محیط خاکی تحت بارهای دینامیکی و شناسایی پاسخ لرزهپارامترهای دینامیکی مهمترین داده

های  از آنجایی که این آزمایش پرهزینه و زمان بر است و آماده سازی گمانه شود.ای استفاده میای درون گمانهژئوفیزیکی آزمایشگاهی و برجا مانند آزمایش لرزهچندین آزمایش  

 (SV) ای سرعت موج برشیای درون گمانهها و روابط تجربی تخمین زده شود. خروجی اصلی آزمایش لرزهمناسب آسان نیست، نیاز است نتایج این آزمایش با کمک مدل

رابطه بین خصوصیات فیزیکی و پارامترهای مکانیکی   استفاده کرد. (SGتوان از آن به صورت غیر مستقیم برای بدست آوردن مدول برشی دینامیکی خاک )خاک است که می 

های ژئوتکنیکی موجود در مناطق جنوبی شهر تهران به  ای و دادهای درون گمانهمایش لرزهآز  19خاک از اصول شناخته شده مهندسی ژئوتکنیک است. در این مطالعه از نتایج  

بینی سرعت موج برشی خاک های ریزدانه در تهران  هایی کاربردی به منظور پیش( برای توسعه مدلANFISهای ورودی یک سیستم استنتاج عصبی فازی تطبیقی )عنوان داده

متغیرهای مستقل اولین مدل پیشنهادی شامل   استفاده شده است؛ در نتیجه پیش پردازش و مدل سازی هوشمند صورت گرفته دو مدل جدید برای این مهم پیشنهاد شده است.

از عدد    های ذکر شدهدر مدل دوم علاوه بر ورودی ها بوده است.(، عمق انجام آزمایش و توزیع اندازه ذرات خاکLL(، حد روانی )PIدرصد رطوبت، شاخص خمیری )

های آموزش و آزمایش برای کل داده  0/ 8و    74/0های پیشنهادی به ترتیب  ( مدل2R( نیز به عنوان متغیر مستقل استفاده شده است. ضرایب تعیین )SPTN) آزمایش نفوذ استاندارد

 بوده است. 

 


