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A B S T R A C T  
 

 

It is critical to evaluate the estimation of the fatigue lifetimes for the piston aluminum alloys, particularly 

in the automotive industry. This paper investigates the effect of different normalization methods on the 
performance of the fatigue lifetime estimation using Extreme Gradient Boosting (XGBoost), as a 

supervised machine learning method. For this purpose, the dataset used in this study includes various 

physical and experimental inputs related to an aluminum alloy and the corresponding fatigue lifetime 
outputs. Furthermore, before fitting the XGBoost model, different fatigue lifetime preprocessing 

methods were utilized and evaluated using metrics such as Root Mean Square Error (RMSE), 

Determination Coefficient (R2), and Scatter Band (SB). The results indicate that modeling fatigue 
lifetime with logarithmic values as a preprocessing method excels when XGBoost is trained with 100% 

of the data. However, other normalization methods demonstrate superior accuracy in estimating test data 

with a 20% test and 80% train set split. 

doi: 10.5829/ije.2024.37.07a.09 
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1. INTRODUCTION 
 
Fatigue loading and the resulting crack propagation are 

significant issues in the industry (1, 2). Researchers have 

attempted to increase the fatigue lifetime of industrial 

equipment and materials by employing various methods, 

including geometry-related technologies such as 

autofrettage (3), and manufacturing procedures such as 

welding (4). As a result, numerous researchers have 

attempted to improve the fatigue behavior of materials, 

geometries and estimate their fatigue lifetime. This 

representation is valid in the realm of alloy and metal 

fabrication. The following paragraph will address this 

claim. 

First, the mechanical behavior of metals and alloys 

will be discussed, with a focus on aluminum alloys in the 

literature. Azadi et al. (5) investigated how the dwell 

time, thermomechanical loading factor, and maximum 

temperature affected the thermomechanical fatigue 

behavior of aluminum alloys. Furthermore, research 

efforts have expanded to investigate the effects of various 

aging heat treatments on the hardness of aluminum alloy 

(6). Akhtar et al. (7) investigated the optimal heat 

treatment temperature for aluminum alloy, revealing that 

175°C was the most effective. Azadi and Parast (8) 

demonstrated in their work that the fatigue lifetime of 

aluminum alloys depends on the variation of the stress, 

fretting force, heat treatment condition, nanoparticles, 

and lubrication. Subsequently, following a thorough 

examination of the literature on the mechanical 

properties of materials, particularly aluminum alloys, it is 

clear that artificial intelligence (AI) methods could be 

helpful in estimating fatigue lifetime, providing 

motivation for further research. 

After discussing the dependence of fatigue lifetimes 

on various variables and motivating using AI methods in 

the fatigue lifetime estimation in the second step, the 

literature provides the following insights. 

Choi (9) estimated the steel fatigue lifetime of various 

chemical compositions using five different machine-

learning methods. Based on his findings, XGBoost had 

the best accuracy with a determination coefficient (R2) of 

98.50%. Moreover, due to the substantial variability in 

the fatigue lifetime of alloys, particularly in the case of 

aluminum piston alloys, researchers are compelled to 

predict their fatigue lifetime behaviors and explore 

alternative innovative methods for estimation against 

destructive testing (10). 

Matin and Azadi (11) conducted a Shapley Additive 

Explanations (SHAP) value-based analysis with 

XGBoost, employing five different machine learning 

models to predict the fatigue lifetime of aluminum alloys. 

Among those models, XGBoost emerged as the most 

effective, demonstrating compatibility with their dataset 

when trained on all available data.  

This study motivates the researchers to find the best 

model for predicting the fatigue lifetime of aluminum 

alloys based on testing data and preprocessing methods. 

Furthermore, because of the potential of this work on the 

possibility of increasing fatigue lifetime, the literature 

provides the following paragraph for discussion: firstly, 

the normalization and scaling approaches, as 

preprocessing steps, transform raw data into a 

standardized format. For this aim, several researches 

have been conducted to suggest normalization methods, 

such as Min-Max normalization (12), Manhattan 

normalization (MN) (13), Euclidean normalization (EN) 

(14), and maximum absolute normalization (MAN) (15). 

Furthermore, the variability in fatigue properties arises 

from different sources, such as experimental conditions, 

material properties, and testing equipment. As a result, 

normalizing fatigue and its characteristics may provide 

valuable approaches for improving fatigue modeling (16, 

17). Second, numerous studies show that the amount of 

training data and the ratio of training to testing data affect 

the accuracy of machine learning models. Additionally, 

these factors play a significant role in improving machine 

learning prediction modeling. Medar et al. (18)conducted 

six trials using various training ratios (ranging from 2/12 

to 12/12) to calculate the mean absolute error. Ramezan 

et al. (19) studied the impacts of different quantities of 

training data on diverse supervised machine-learning 

classification methods. 

The present study demonstrates the impact of 

normalization approaches on enhancing the fatigue 

lifetime prediction of AlSi12CuNiMg aluminum alloy, in 

the engine piston application. The prediction relies on 

stress levels in the rotary bending fatigue tests, heat 

treatment conditions of manufactured standard test 

specimens, the fretting (wear) force during the test, the 

corrosion time subjected to test specimens, and the 

existence of the lubrication during the test, all serving as 

inputs for the XGBoost machine learning model.  

The novelty of this work lies in finding the best 

modeling process for estimating the fatigue lifetime in 

different training and testing sets through data splitting 

by incorporating various normalization approaches. The 

main application of this work is estimating the fatigue 

lifetime of aluminum alloys with highly accurate 

methods under multiple inputs, which traditional 

methods such as S-N curves do not provide. Moreover, 

by examination of test data on estimation of the fatigue 

lifetime, the proficiency of this method is demonstrated 

in reducing destructive tests like rotary bending fatigue 

tests for analysis. 

 

 

2. RESEARCH METHODS 

 
2. 1. Experimental Dataset             This segment is 

based on the experimental dataset described by Azadi and 

Parast (8). The goal was to evaluate how different ISO 
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1143 standard specimens perform in corrosion fatigue, 

pure fatigue, and fretting fatigue tests with varying inputs 

in this work (8). Furthermore, these specimens were 

manufactured using a commercially known alloy called 

AlSi12CuNiMg, which has widespread application in the 

automotive manufacturing industry. Each sample in this 

dataset contains six distinct variables that serve as 

features (all of the variables were considered integers). 

The variables included "stress" ranging from 90 MPa to 

120 MPa; "fretting force" with values ranging from 0 N 

to 20 N; the presence of "lubrication" denoted by a value 

of 0 for non-existing and 1 for existing; the percentage of 

"nano-particles" in the manufacturing of specimens, 

ranging from 0 to 1%; the corrosion time of manufactured 

specimens in H2SO4, ranging from 0 hours to 200 hours; 

and the existence of T6 heat-treatment, with a value of 0 

for non-existing and 1 for existing heat-treatment. 

Moreover, the target is the fatigue lifetime, ranging from 

500 cycles to 1,398,100 cycles. 

 
2. 2. Modeling Techniques          XGBoost is an 

expandable tree-boosting technique, offering significant 

potency and speed for machine learning tasks. Equation 

1 denotes the objective involving minimizing 

regularization (20). 

^
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where 𝑙 (𝑦𝑖 , 𝑦𝑖̂) represents the difference between the 

estimated and actual values, Ω(𝑓𝑗) and K are identified 

as regularization factors and the cumulative count of 

trees, respectively. 

Various normalization and scaling methods are 

utilized to define a specific data range to enhance the 

performance and accuracy of the machine learning 

model. Some of these methods are as follows (21, 22): 

MN: In this normalization approach, 𝑋𝑛 is the 

normalized variable, X represents the unprocessed 

variable, and |𝑋|1represents the Manhattan norm. 

Equation 2 exemplifies this technique (22). 
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EN: Within this normalization strategy,  𝑋𝑛 illustrates the 

normalized variable, X represents the unprocessed 

variable, and |𝑋|2 represents the Euclidean norm. 

Equation 3 exemplifies this technique (22). 
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MAN: In this method, 𝑋𝑛 is the normalized variable, X 

represents the unprocessed variable, and 𝑀𝐴𝑋(|𝑋|) 

indicates the maximum absolute value of that particular 

variable among all the samples. Equation 4 illustrates this 

method (21). 
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Modified min-max normalization (MMN): This method 

is closely based on Min-Max normalization. The only 

difference is that when calculating the logarithm value 

within this normalization approach, it becomes necessary 

to eliminate zero values from the normalized variables. 

Equation 5 defines this method with the following 

equation. Moreover, 𝑋𝑛 represents the normalized 

variable, X is the unprocessed variable, 𝑋𝑚𝑖𝑛 represents 

the minimum value among all unprocessed variables, and 

𝑋𝑚𝑎𝑥   denotes the maximum value among all unprocessed 

variables (21). 
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The performance and accuracy of estimation, 

regression, and machine learning modeling can be 

evaluated using metrics like R2 and RMSE. Additionally, 

the SB offers a valuable way to illustrate a factor that 

covers the complete range of actual lifetimes versus the 

estimated fatigue lifetime (23, 24). The R2 metric, ranging 

from 0 to 1, is commonly employed to assess the efficacy 

of a machine learning approach. A higher R2 indicates 

better prediction of the target variable. Similarly, SB 

plots represent the actual and predicted values on the axes 

on a logarithmic scale. The line with the equation of y=x 

signifies a high accuracy in modeling (experimental and 

predicted values), and SB values are the slopes of the 

lines that enclose the data points. A lower SB indicates 

high accuracy and less scattering of the data from the y=x 

line (23, 24). Figure 1 provides a detailed representation 

of the SB plot, as depicted. 
 

 

 
Figure 1. The  detailed depiction of the SB plot 
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3. RESULTS AND DISCUSSION 
 

Table 1 presents the comparative results of diverse 

normalization methods, employing XGBoost as the 

machine learning algorithm. It displays R2 and RMSE 

values for normalized fatigue lifetime and its logarithm, 

using the entire dataset without splitting it into separate 

training and test data. Additionally, a study was 

conducted to predict the fatigue lifetime under various 

conditions using XGBoost and 100% of the data as 

training data (24). Their results represented the R2 value 

of 97.66%, which closely aligned with the findings of the 

present study, where the R2 value was 95.66%. Moreover, 

the results presented in this table demonstrate that MMN 

achieves the highest modeling accuracy among the other 

normalization techniques. However, it is worth noting 

that the fatigue lifetime without normalization was fitted 

remarkably well using XGBoost. Moreover, according to 

alternate researche, EN had a lower performance versus 

MMN, which, within this study, is also demonstrated to 

have a lower performance (25). 

Singh and Singh (26) examined how normalization 

methods influenced 21 widely recognized datasets, 

including Iris, Australian, Breast Cancer, and others. 

They assessed their model's accuracy and found that, 

notably, in some datasets, normalization without feature 

selection and weighting yielded inadequate results. 

Notably, in some cases, this method resulted in lower 

accuracy. The study also revealed a fluctuating accuracy 

pattern across the 21 different datasets. This pattern 

highlighted that, in general, max absolute normalization 

(MAN), followed by min-max normalization, and 

unnormalized methods achieved higher accuracy, as 

indicated by their respective performances (26). Notably, 

the current study shows that when considering 100% of 

the training data, modified MMN outperforms both 

unnormalized and MAN methods. 

Figure 2 illustrates the histograms, scatter plots, and 

SB for preprocessed fatigue lifetime data and its 

estimation.  

 

 
TABLE 1. The values of R2 and RMSE for different 

normalization methods using 100% of data as training data 

Logarithm of lifetime Lifetime Normalization 

method RMSE R2 RMSE R2 

0.170 95.66 108624.986 68.10 No Normalization 

0.170 95.66 0.009 67.97 MN 

0.170 95.66 0.043 68.09 EN 

0.182 95.99 0.077 68.10 MMN 

0.170 95.66 0.077 68.10 MAN 

Note:The bold values signify the superior accomplishments 

 

 

 

 

  

(a) 

  
(b) 

  
(c) 
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(d) 

  
(e) 

  
(f) 

  
(g) 

  
(h) 

  
(i) 

  
(j) 

Figure 2. The histogram, scatter plot, and SB for preprocessing fatigue lifetime values and estimating them with 100% of the 

training data for different models: (a) No normalization of fatigue lifetime modeling, (b) logarithm value of fatigue lifetime 

modeling, (c) EN of fatigue lifetime modeling, (d) logarithm value of EN fatigue lifetime modeling, (e) MN of fatigue lifetime 

modeling, (f) logarithm value of MN fatigue lifetime modeling, (g) MMN of fatigue lifetime modeling, (h) logarithm value of MMN 

fatigue lifetime modeling, (i) MAN of fatigue lifetime modeling, and (j) logarithm value of MAN fatigue lifetime modeling 
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TABLE 2. The mean values of R2 and RMSE for different 

normalization methods using 80-20% of the data as random 

training and testing 

Logarithm of 

lifetime 
Lifetime 

Normalization 

method Mean 

RMSE 

Mean 

R2 

Mean 

RMSE 

Mean 

R2 

0.279 88.47 176235.565 13.95 No Normalization 

0.276 88.67 0.014 19.37 MN 

0.277 88.63 0.068 18.18 EN 

0.300 88.72 0.122 18.10 MMN 

0.277 88.61 0.122 18.11 MAN 

Note: The bold values signify the superior accomplishments. 

 

 
Each plot on the left and right sides of the figure 

corresponds to a specific preprocessing method using 

100% of the data for training. The figure presents the 

distribution of fatigue lifetime data following each 

preprocessing approach and its associated estimation. 

Moreover, a study depicts the SB plot for this 

experimental dataset, using 100% of the data as training 

data to predict the logarithmic values of fatigue lifetime, 

which range between 2.69897 and 6.14554 (8). This 

representation is included in Figure 2(b) of this work. 

Several methods exist for splitting data into training 

and test sets. Surono et al. (27) employed a convolutional 

neural network to achieve an 80%-20% ratio for training 

and testing in various machine learning methods to 

estimate lung disease. In a different study, 

Kurdthongmee (28) investigated the impact of varying 

the number of training data points from 100 to 250 to 

determine the optimal amount for estimating parawood 

pith. For a more specific focus on fatigue lifetime 

estimation, Choi (9) reported a 30%-70% test and train 

ratio using XGBoost for estimating steel fatigue lifetime 

based on stress. The achieved R2 for testing fatigue 

lifetime was 98.03%. He et al. (29) used stress and fatigue 

lifetime datasets in their work. They explored the effects 

of three different test-train ratios on estimating the 

fatigue lifetime of three commercial steels, concluding 

that a 10%-90% training ratio with artificial neural 

networks and random forest yielded the best results. 

Table 2 in this study compares the results of various 

normalization methods using XGBoost as the machine 

learning algorithm. It calculates the average R2 and 

RMSE over 20 iterations after randomly splitting the data 

into 80% training and 20% testing sets. The results 

demonstrate that, unlike when using 100% of the training 

data, when using 80% of the data for training and 

calculating mean R2 for test data, all of the normalization 

methods improved their accuracy in modeling both the 

preprocessed fatigue lifetime and its logarithm. 

This section of the study illustrates that when using 

the same algorithms and an equal number of training 

samples, the accuracy varies between repetitions that use 

different training samples, which is consistent with the 

other study (19). Furthermore, a comparison of the results 

in Tables 1 and 2 reveals that the number of training data 

samples has a significant impact on the metrics values. 

This observation is consistent with the findings of other 

research studies (18, 30). 

Figure 3 illustrates histograms, scatter plots, and SB 

for preprocessed fatigue lifetime data and its estimation. 

Each plot on the left and right sides of the figure 

corresponds to a specific preprocessing method. These 

methods trained on 80% of the data and generated plots 

for a specific random state, which was consistent across 

all modeling. Moreover, the graphs relate to the test data. 

The figure presents the distribution of fatigue lifetime 

data following each preprocessing approach and its 

associated estimation. Furthermore, it illustrates a subset 

of five logarithmic normalization method approaches 

among all preprocessing techniques, as the remaining 

techniques lack satisfactory accuracy. 

According to SB plots in Figures 2 and 3, coverages 

of the data by SB lines are different. These SB values in 

these figures correspond to optimized positions of SB 

lines for high data coverage with a low value of SB. 

Therefore, Table 3 represents SB values for different data 

coverages of SB lines to compare SB values effortlessly. 

Moreover, it indicates that SB values for fatigue lifetime 

and its logarithm, with no requirement for preprocessing 

techniques, are the best achievements. 

A separate study conducted experiments using 27 

different specimens subjected to varying stress levels 

(31). To compare the SB values presented in Table 3 for 

estimating the fatigue lifetime in this study with those 

from the other research (31). Those specimens were 

utilized to develop an experimental equation for the 

fatigue lifetime prediction, and the SB value was reported 

with a margin of ±2 for their modeling of the fatigue 

lifetime in cast iron crankshafts (31). In contrast, the 

present study used the entire dataset for training and 

obtained an SB value of ±10, implying that its modeling 

may not be as accurate as other research. Notably, the 

current dataset is five times larger than the previous one. 

Even after accounting for 90% coverage of SB lines, the 

SB value remained constant at ±2, demonstrating the 

strength and reliability of the proposed approach even 

when applied to over 100 data points. 

The estimated fatigue lifetimes in low-cycle fatigue 

were not valid when the logarithmic transformer was not 

applied to the fatigue lifetime and its normalized values 

in this study. The estimated fatigue lifetimes of 

aluminum alloys deviated significantly from the physics 

of the lifetime, resulting in some negative estimated 

lifetimes. However, using a logarithmic transformer  
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(a) 

  
(b) 

  

(c) 

  
(d) 

  
(e) 

Figure 3. The histogram, scatter plot, and SB for same random state testing preprocessing fatigue lifetime values and estimating 

them with 80-20% of the data as training and testing for different models: (a) Logarithm value of fatigue lifetime modeling, (b) 

logarithm value of MN fatigue lifetime modeling, (c) logarithm value of MMN fatigue lifetime modeling, (d) logarithm value of 

MAN fatigue lifetime modeling, and (e) Logarithm value of EN fatigue lifetime modeling 

 

 

proved to be a wise decision since it effectively 

controlled the pattern of the fatigue lifetime, transitioning 

from low-cycle fatigue lifetimes to high-cycle fatigue 

lifetimes. Furthermore, no physical laws or empirical 

equations related to the fatigue lifetime were used to 

obtain these predicted values. 

A major challenge in training or fine-tuning machine 

learning models is calculating the number of 

observations required for the optimum performance. 

Although having more training observations leads to 

better model performance, in theory, the procedure of 

gathering more data is typically time-consuming, 

expensive, or even impossible (32). Similarly, in the 

rotary bending fatigue tests, the preparation of specimens 

incurs costs for the manufacturer, and the tests 

themselves are both destructive and time-consuming. In 

such cases, learning curves can be used to determine 

whether the number of samples used is enough. Figure 4 

represents learning curves for fatigue lifetime modeling 

and its logarithm value modeling. The training R2 lines  
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TABLE 3. SB values for all methods showcasing different data 

coverage of SB lines 

SB Number 

of 

scatter 

data 

Test 

size 

(%) 

Method 85% 

data 

90% 

data 

95% 

data 

100% 

data 

1.8 2.0 3.0 10.0 147 0 Life time 

1.1 1.1 1.1 1.2 147 0 
Log 

lifetime 

1.9 2.2 2.8 9.0 147 0 MAN 

1.1 1.1 1.2 1.3 147 0 Log MAN 

2.5 3.0 3.4 9.0 146 0 MMN 

1.1 1.1 1.2 1.3 146 0 Log MMN 

2.9 3.5 4.3 9.0 147 0 EN 

1.1 1.1 1.2 1.6 147 0 Log EN 

3.5 4.0 6.0 12.0 147 0 MN 

1.1 1.1 1.2 1.4 147 0 Log MN 

1.1 1.1 1.1 1.1 30 20 
Log 

lifetime 

1.3 1.3 1.4 2.8 30 20 Log MAN 

1.2 1.2 1.3 2.4 30 20 Log MMN 

1.3 2.0 2.1 3.2 30 20 Log EN 

1.3 1.4 1.5 1.7 30 20 Log MN 

 

 

 
(a) 

 
(b) 

Figure 4. Learning curves for (a) fatigue lifetime modeling 

and (b) logarithm of fatigue lifetime modeling 

are roughly equal to 1, indicating that the models are 

catching the patterns in the training data. 

Additionally, the R2 values for cross-validation (CV) 

are approaching convergence with the R2 values from the 

training set, as depicted in the learning curves. Generally, 

one of the reasons for the proximity of the training R2 line 

to 1 is the overfitting of the model. However, the 

increasing number of training data indicates that the 

model requires more samples to achieve better 

performance and accuracy (33, 34). In this study, the 

accuracy of the test data, especially for logarithmic 

modeling, was notable and the models did not 

demonstrate insensitivity to small changes in the training 

data. Therefore, based on Figure 4, to achieve a better 

performance in predicting outcomes, surpassing the 

representations of the models presented in this study, it is 

recommended to expand the dataset to include additional 

samples. 

 

 

4. CONCLUSIONS 
 
This study focused on using various normalization 

methods for fatigue lifetime and its logarithm as 

preprocessing tasks, employing extreme gradient 

boosting (XGBoost) for prediction. The results included 

scatter bands, metrics (R2 and RMSE), histograms, and 

scatter plots for 100% and 80% of the data employed as 

training. The predicted values of preprocessed fatigue 

lifetimes in various XGBoost models depend on specific 

conditions from the rotary bending fatigue tests and 

standard manufactured specimens used in the same test. 

The subsequent results were generated through this 

process: 

• The best scatter band (SB) achievement for all 

normalization approaches, using 100% of the data 

for training data modeling and a random 20% of 

data for testing data modeling, was the logarithm of 

fatigue lifetime with SB values of ±1.2 and ±1.1, 

respectively. Therefore, it demonstrates the most 

accurate model among the other models in 

estimating. 

• When using 100% of the data as training, all 

techniques of the normalization and unnormalized 

approaches had nearly identical values (with a 

difference of less than 0.5%). The SB values, on the 

other hand, varied. They ranged from ±9.0 to ±12.0 

for non-logarithmic models and from ±1.2 to ±1.6 

for logarithmic models. Therefore, it demonstrates 

the normalization method had no significant impact 

on 100% training ratio modelling. 

• Calculating the mean values of R2 for 80% of 

random training modeling illustrates that non-

logarithmic normalization methods exhibited better 

accuracy (at least 4% higher than unnormalized 

fatigue lifetime modeling), whereas, for logarithmic 
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modeling, the values were closely aligned (ranging 

from 88.47% to 88.72%). 

• Learning curves show that as the amount of training 

data increases, the prediction of testing data 

improves. As a result, additional samples should be 

added to the dataset to improve the accuracy of all 

models. 

The primary limitation of the current work occurs 

when the logarithmic transformer is not applied to the 

normalized fatigue lifetime and the fatigue lifetime 

without normalization in XGBoost modeling. The 

predicted values for the fatigue lifetime and its 

normalization differed from the physics of the fatigue 

lifetime, particularly for low-cycle fatigue lifetimes, with 

an incorrect negative estimation. However, the 

logarithmic models were accurate, and the predictions 

agreed with the physics of the fatigue lifetime. 

Furthermore, for the future research aimed at improving 

fatigue lifetime modeling, it is suggested that an 

activation function be used in the output layer of a neural 

network. Additionally, investigating the deep learning 

frameworks that allow users to directly impose 

constraints on the layer may be beneficial, particularly 

for datasets with binary and categorical variables. This 

method is especially useful for datasets with few target 

values, such as the one used in this study to represent 

aluminum alloys. For evaluating the fatigue lifetimes of 

aluminum alloys in the automotive industry, these 

methods provide highly accurate alternatives to 

destructive tests such as rotary bending fatigue tests. 

 

 

5. REFERENCES 
 

1. Farrahi G, Faghidian S, Smith D. Reconstruction of residual 

stresses in autofrettaged thick-walled tubes from limited 

measurements. International Journal of Pressure Vessels and 

Piping. 2009;86(11):777-84. 10.1016/j.ijpvp.2009.03.010  

2. Ismaiel A. Wind turbine blade dynamics simulation under the 

effect of atmospheric turbulence. Emerging Science Journal. 

2023;7(1):162-76. 10.28991/ESJ-2023-07-01-012  

3. Ali Faghidian S. Analytical approach for inverse reconstruction 

of eigenstrains and residual stresses in autofrettaged spherical 
pressure vessels. Journal of Pressure Vessel Technology. 

2017;139(4):041202. 10.1115/1.4035980  

4. Farrahi G, Faghidian S, Smith D. An inverse method for 
reconstruction of the residual stress field in welded plates. 2010. 

10.1115/1.4001268  

5. Azadi M, Farrahi G, Winter G, Eichlseder W. The effect of 
various parameters on out-of-phase thermo-mechanical fatigue 

lifetime of A356. 0 cast aluminum alloy. International Journal of 

Engineering, Transactions C: Aspects. 2013;26(12):1461-70. 

10.5829/idosi.ije.2013.26.12c.06  

6. Azadi M, Rezanezhad S, Zolfaghari M. Effects of various ageing 

heat treatments on microstructural features and hardness of piston 
aluminum alloy. International Journal of Engineering, 

Transactions A: Basics. 2019;32(1):92-8. 

10.5829/ije.2019.32.01a.12  

7. Akhtar M, Qamar SZ, Muhammad M, Nadeem A. Optimum heat 
treatment of aluminum alloy used in manufacturing of automotive 

piston components. Materials and Manufacturing Processes. 

2018;33(16):1874-80. 10.1080/10426914.2018.1512128  

8. Azadi M, Parast MSA. Data analysis of high-cycle fatigue testing 

on piston aluminum-silicon alloys under various conditions: 

Wear, lubrication, corrosion, nano-particles, heat-treating, and 

stress. Data in brief. 2022;41:107984. 10.1016/j.dib.2022.107984  

9. Choi D-K. Data-driven materials modeling with XGBoost 

algorithm and statistical inference analysis for prediction of 
fatigue strength of steels. International Journal of Precision 

Engineering and Manufacturing. 2019;20:129-38. 

10.1007/s12541-019-00048-6  

10. Matin M, Azadi M. A Novel Machine Learning-Based Model for 

Predicting of Transient Fatigue Lifetime in Piston Aluminum 

Alloys. Available at SSRN 4598611. 10.2139/ssrn.4598611  

11. Matin M, Azadi M. Machine learning-based modeling for 

estimating bending fatigue lifetimes in AlSi12CuNiMg aluminum 
alloy of engine pistons under different inputs: Fretting force, 

corrosion time, lubrication, heat-treating, nano-particles, and 

stress. Corrosion Time, Lubrication, Heat-Treating, Nano-

Particles, and Stress. 2023. 10.2139/ssrn.4549376  

12. Munkhdalai L, Munkhdalai T, Park KH, Lee HG, Li M, Ryu KH. 

Mixture of activation functions with extended min-max 
normalization for forex market prediction. IEEE Access. 

2019;7:183680-91. 10.1109/ACCESS.2019.2959789  

13. Zhou W, Liu A, Wu L, Chen X. A L1 normalization enhanced 
dynamic window method for SSVEP-based BCIs. Journal of 

Neuroscience Methods. 2022;380:109688. 

10.1016/j.jneumeth.2022.109688  

14. Dai Z, Chen W, Huang X, Li B, Zhu L, He L, et al., editors. Cnn 

descriptor improvement based on l2-normalization and feature 

pooling for patch classification. 2018 IEEE International 
Conference on Robotics and Biomimetics (ROBIO); 2018: IEEE. 

10.1109/ROBIO.2018.8665330 

15. Gómez-Escalonilla V, Martínez-Santos P, Martín-Loeches M. 
Preprocessing approaches in machine-learning-based 

groundwater potential mapping: an application to the Koulikoro 

and Bamako regions, Mali. Hydrology and Earth System 

Sciences. 2022;26(2):221-43. 10.5194/hess-26-221-2022  

16. Lv S, Liu C, Chen D, Zheng J, You Z, You L. Normalization of 

fatigue characteristics for asphalt mixtures under different stress 
states. Construction and Building Materials. 2018;177:33-42. 

10.1016/j.conbuildmat.2018.05.109  

17. Lv S, Wang P, Fan X, Cabrera MB, Hu L, Peng X, et al. 
Normalized comparative study on fatigue characteristics of 

different pavement materials. Construction and Building 

Materials. 2021;271:121907. 

10.1016/j.conbuildmat.2020.121907  

18. Medar R, Rajpurohit VS, Rashmi B, editors. Impact of training 

and testing data splits on accuracy of time series forecasting in 
machine learning. 2017 International Conference on Computing, 

Communication, Control and Automation (ICCUBEA); 2017: 

IEEE. 10.1109/ICCUBEA.2017.8463779 

19. Ramezan CA, Warner TA, Maxwell AE, Price BS. Effects of 

training set size on supervised machine-learning land-cover 

classification of large-area high-resolution remotely sensed data. 

Remote Sensing. 2021;13(3):368. 10.3390/rs13030368  

20. Meng Y, Yang N, Qian Z, Zhang G. What makes an online review 

more helpful: an interpretation framework using XGBoost and 
SHAP values. Journal of Theoretical and Applied Electronic 

Commerce Research. 2020;16(3):466-90. 10.3390/jtaer16030029  

21. Md AQ, Kulkarni S, Joshua CJ, Vaichole T, Mohan S, Iwendi C. 
Enhanced preprocessing approach using ensemble machine 

learning algorithms for detecting liver disease. Biomedicines. 

2023;11(2):581. 10.3390/biomedicines11020581  



M. Matin and M. Azadi / IJE TRANSACTIONS A: Basics  Vol. 37 No. 07, (July 2024)   1296-1305                                    1305 

 

22. Chiu W-Y, Chen B-S. Mobile location estimation in urban areas 
using mixed Manhattan/Euclidean norm and convex 

optimization. IEEE transactions on Wireless Communications. 

2009;8(1):414-23. 10.1109/T-WC.2009.080156  

23. Azadi M, Shahsavand A, Parast MSA. Analyzing experimental 

data from reciprocating wear testing on piston aluminum alloys, 

with and without clay nano-particle reinforcement. Data in Brief. 

2022;45:108766. 10.1016/j.dib.2022.108766  

24. Nasiri H, Azadi M, Dadashi A. Interpretable extreme gradient 

boosting machine learning model for fatigue lifetimes in 3D-
printed polylactic acid biomaterials. Available at SSRN 4364418. 

2023. 10.2139/ssrn.4364418  

25. Eesa AS, Arabo WK. A normalization methods for 

backpropagation: a comparative study. Science Journal of 

University of Zakho. 2017;5(4):319-23. 10.25271/2017.5.4.381  

26. Singh D, Singh B. Investigating the impact of data normalization 

on classification performance. Applied Soft Computing. 

2020;97:105524. 10.1016/j.asoc.2019.105524  

27. Surono S, Afitian MYF, Setyawan A, Arofah DKE, Thobirin A. 

Comparison of CNN Classification Model using Machine 

Learning with Bayesian Optimizer. HighTech and Innovation 

Journal. 2023;4(3):531-42. 10.28991/HIJ-2023-04-03-05  

28. Kurdthongmee W. Comprehensive Evaluation of Deep Neural 

Network Architectures for Parawood Pith Estimation. HighTech 

and Innovation Journal. 2023;4(3):543-59. 10.28991/HIJ-2023-

04-03-06  

29. He L, Wang Z, Akebono H, Sugeta A. Machine learning-based 

predictions of fatigue life and fatigue limit for steels. Journal of 
Materials Science & Technology. 2021;90:9-19. 

10.1016/j.jmst.2021.02.021  

30. Althnian A, AlSaeed D, Al-Baity H, Samha A, Dris AB, Alzakari 
N, et al. Impact of dataset size on classification performance: an 

empirical evaluation in the medical domain. Applied Sciences. 

2021;11(2):796. 10.3390/app11020796  

31. Khameneh MJ, Azadi M. Evaluation of high-cycle bending 

fatigue and fracture behaviors in EN-GJS700-2 ductile cast iron 
of crankshafts. Engineering Failure Analysis. 2018;85:189-200. 

10.1016/j.engfailanal.2017.12.017  

32. Cruz F, Castelli M. Learning Curves Prediction for a 
Transformers-Based Model. Available at SSRN 4305463. 2023. 

10.28991/ESJ-2023-07-05-03  

33. Zhang G, Shi Y, Yin P, Liu F, Fang Y, Li X, et al. A machine 
learning model based on ultrasound image features to assess the 

risk of sentinel lymph node metastasis in breast cancer patients: 

Applications of scikit-learn and SHAP. Frontiers in Oncology. 

2022;12:944569. 10.3389/fonc.2022.944569  

34. Giola C, Danti P, Magnani S. Learning curves: A novel approach 

for robustness improvement of load forecasting. Engineering 

Proceedings. 2021;5(1):38. 10.3390/engproc2021005038  

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

COPYRIGHTS 

©2024  The author(s). This is an open access article distributed under the terms of the Creative Commons 

Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long 

as the original authors and source are cited. No permission is required from the authors or the publishers . 
 

 

 

 

Persian Abstract 

 چکیده 
  ن یمختلف را بر عملکرد تخم یساز یعاد یهاروش ریمقاله تاث نیا امری حیاتی است. در صنعت خودرو،   ژهیبه و  وم،ینیآلوم یاژهایآل یبرا یبرآورد طول عمر خستگ یابیارز

مجموعه داده   مطالعه    نی در ابه این منظور    .کندی م  ی نظارت شده بررس  ن یماش  یریادگیروش    کی( به عنوان  XGBoost)  دیشد  انیگراد  تیبا استفاده از تقو  ی طول عمر خستگ

، XGBoostقبل از برازش مدل    ن،یعلاوه بر ا  ای شامل ورودی های فیزیکی و تجربی متنوع مربوط به آلیاژ آلومینیوم در کنار عمر خسته به عنوان خروجی استفاده شده است. 

(، و باند R²)  نییتع   بی(، ضرRMSE)  شهیمربعات ر نیانگ یم ی مانند خطا ییارهایو سپس با استفاده از مع  شوندی اعمال م یپردازش طول عمر خستگ شیمختلف پ یهاروش

  XGBoostکه  یزمان پردازششیروش پ کیبه عنوان  یتمیلگار ریبا مقاد یطول عمر خستگ یسازکه مدل دهدیآمده نشان مدستبه جینتا شده اند. یابی( ارزSB) یپراکندگ

ا  دارد.  یبرتر  شود،یها آموزش داده مدرصد داده  100با    ٪80  و   تست  ٪20  م یبا  تقس  شیآزما  یهاداده  ن یرا در تخم  یدقت بالاتر  یسازنرمال  یهاروش   ریحال، سا  ن یبا 

 .دهندمی  نشان یادیگیریمجموعه داده 
 

 
 

 

 


