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A B S T R A C T  
 

 

The economic production quantity (EPQ) model considers the production rate, demand rate, setup costs, 

holding costs, and shortage costs to find the production quantity that minimizes the sum of these costs. 
The goal is to balance the costs associated with production, holding inventory, and potential shortages. 

In this paper, two objectives include the costs of production and ordering and others in a separate 
objective function. In the objectives of the other costs, The cost of storage space as a supply is defined 

to be minimized. This study considers scrap and reworks in the EPQ model. This inventory model 

accounts for many items on a single machine. The production capacity is reduced, and there are shortages 
when only one machine exists. By determining the quantities of the products produced by the 

manufacturing facility, the storage space for each product, cycle time, and product scarcity, we can 

reduce both the overall cost and the supply cost of warehouse space due to non-linearity and the inability 
to solve commercial software in large dimensions, a multi-objective meta-heuristic algorithm, namely 
the  non-dominated sorting genetic algorithm (NSGA-II), is used. The findings are further validated using 

the non-dominated ranking genetic algorithm (NRGA). Also, the obtained Pareto front is studied with 
several indicators. To perform these two algorithms at the best condition, we employed the Taguchi 

approach and related orthogonal arrays and performed algorithms for each array considering several 

factors. Also, to validate the mathematical model, we used the augmented epsilon-constraint method 
executed in the GAMS environment. It is clear that GAMS commercial software yields better results; 

however, these two algorithms are justifiable when the problem becomes bigger. Finally, by performing 

a sensitivity analysis for these indicators and the objective functions, the behavior of the proposed 
algorithms is compared and examined in detail. Also, the superior algorithm is chosen using the TOPSIS 

as a multi-criteria decision-making method. Numerical examples show how the presented model and the 

proposed algorithms may be used efficiently. A surveying literature review clarifies that the related 
objective functions, constraints, and solution approaches have not been investigated until now.   

doi: 10.5829/ije.2024.37.07a.18 
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NOMENCLATURE 

id  Demand for the i-th product iA  Setup expense for producing a batch of the i-th product 

ip  Production rate of the i-th product its  Duration of machine setup to manufacture the i-th product 

iu  Paulty products of the i-th product  io  Supply cost per unit of storage space 

iv  Product backorders as a percentage of its shortfall  if  Space occupied by each unit of the i-th product 

ic  Manufacturing cost per unit of the i-th product s
iq  For each cycle (i = 1, 2,..., n), the size of the 

manufacturing lot for the i-th product 

ik  Reworking the costs per item of the i-th product  0T   Cycle’s duration 

ih  Price per item and holding time for the i-th product 0N   Cycles per year, number 

ib  Backorder price for the i-th product 0iX   Continuous random variable represents the product’s 

storage space., 

isc  Scrap percentage of the i-th product  0is   Overall shortfall amount for the  i-th product of the cycle 

iH  After normal manufacturing ends, the product’s maximum 

amount of inventory 
max
iH  Final amount of available inventory for the product 

 

 

1. INTRODUCTION 
 

Inventory control is crucial for maintaining inventory 

levels and minimizing system costs. It ensures that an 

organization’s existing items are available for 

production, distribution, sales, and engineering 

operations management departments, considering factors 

like time, location, quantity, quality, and cost. Inventory 

control includes raw materials and products stored in the 

warehouse. Operations management involves designing 

and managing products, processes, services, and supply 

chains. It includes strategic, tactical, and operational 

levels. 

Improving competitive power and 

comprehensiveness in supply chains is essential for 

efficient systems. Although the economic production 

quantity model is often used in inventory management 

and manufacturing, it is crucial to investigate if damaged 

goods are included in inventory models. This study 

investigates the economic production quantity (EPQ) 

model during production periods for different time 

components, shortages, and lost sales, focusing on 

production costs, ordering, and storage space.  

However, the EPQ model is specifically designed for 

situations where items are produced or manufactured 

rather than simply ordered. It is often applied to scenarios 

where production rates are finite and may vary. The EPQ 

model takes into account factors such as production rate 

constraints, setup costs, holding costs, and demand for 

the product. The key components of the EPQ model 

include: 

• Demand: The rate at which customers are 

requesting the product. 

• Setup (or production) cost: The cost associated 

with setting up the production process, including the 

cost of preparing the machinery, changing tools, etc. 

• Holding (or carrying) cost: The cost of holding 

or storing inventory, including expenses related to 

warehousing, insurance, and potential obsolescence. 

• Production rate: The rate at which units are 

produced. 

The goal of the EPQ model is to find the production 

quantity that minimizes the total cost, taking into 

consideration the trade-off between setup costs and 

holding costs. The formula for the Economic Production 

Quantity is derived based on mathematical optimization 

techniques, and it helps businesses determine the most 

cost-effective production quantity to meet demand. 

This paper’s remaining sections are organized as 

follows.. Section two scrutinizes the related literature 

review meticulously. The mathematical formulation of 

the issue is covered in section 3. The methods for the 

solutions are in section 4. Section 5 deals with the 

solution and comparison of numerical instances. The 

conclusion and some recommendations for more research 

are included in section 6. References are also included in 

section 7. 

 

 

2. LITERATURE REVIEW 
 

Cunha et al. (1) examined the economic production 

quantity model with partial backordering and a discount 

for batches of subpar quality. Shah and Vaghela (2) 

created and refined a flawed production inventory model 

for time- and effort-dependent demand under inflation 

and optimum dependability. Taleizadeh et al. (3) 

developed sustainable economic output quantity models 

for shortage inventory systems. Al-Salamah (4) 

investigated how much economic production might be 

produced in a manufacturing process that included faults 

and configurable synchronous and asynchronous rework 

rates. The economic order quantity (EOQ) and EPQ 

inventory models with two backorder charges were 

developed by Lin (5) using analytical geometry and 

algebra. Marchi et al. (6) examined the economic 

production quantity model. It includes learning 

production, quality reliability, and energy efficiency. 

The EOQ and EPQ inventory models with partial 

backorder issues were studied by Thinakaran et al. (7). 

For the economic output quantity and the joint economic 

lot size, Zavanella et al. (8) considered energy. To resolve 
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an EPQ model for an inefficient manufacturing process, 

De et al. (9) employed a game-based approach and a 

neutrosophic fuzzy method. Ganesan and Uthayakumar 

(10) created EPQ models for a flawed manufacturing 

system that considers warm-up production runs, 

shortages during hybrid maintenance periods, and partial 

backordering. 

Guha and Bose (11) presented the EPQ in Batch 

Manufacturing with imperfect quality and non-

destructive acceptance sampling. Insights from an EPQ 

model were investigated by Hauck et al. (12) on the 

impact of early inspection on the functionality of 

production systems. According to Kalantari and 

Taleizadeh (13), mathematical modeling may be used to 

find the best replacement for failed items in an EPQ 

model with several shipments. In 2020, that was 

formulated by Nobil et al. (14). An economic production 

quantity inventory model with discrete delivery orders, 

common production standards, and budgetary constraints 

for several items produced on a single machine. The 

Development and Solvency were reported by Rahaman 

et al. (15). 

The production model in terms of amount under 

arbitrary commands both with and without deterioration. 

Artificial bee colony optimization was the basis for 

Rahman et al.’s (16) synergetic analysis of the fractional-

order economic production quantity model. Economic 

output quantity models that are sensitive to forecasting 

maintenance and modified  later on. An economic 

production quantity model for three tiers of work was 

designed by using the Weibull distribution degradation 

and shortage. Bose and Guha (17) looked at the economic 

production lot size under the conditions of low quality, 

online inspection, and inspection errors. A comment on 

the cost comparison method used to address the EOQ and 

EPQ concerns. 

Using fuzzy geometric programming (GP), different 

fuzzification and defuzzification approaches, and an 

unconstrained multi-item model, Kalaiarasi et al. (18) 

claim that this model was optimized. Moghdani et al. (19) 

considered a multi-item fuzzy economic production 

quantity model with multiple deliveries. Shekhawat et al. 

(20) looked at the EPQ model for deteriorating items with 

a Weibulleterioration rate throughout the finite time 

horizon. To solve a multi-product, single-machine EPQ 

inventory model utilizing GP mode, Kalaiarasi et al. (21) 

employed Python. 

A quantitative model of economic production with a 

fluctuating energy price has been constructed. Nobil et al. 

(22) considered a setup time/cost function for a multi-

product imperfect manufacturing system and an 

economic production quantity inventory model. Priyan et 

al. (23) examined a cleaner EPQ inventory model with 

synchronous and asynchronous rework procedures and 

investments in green technologies. Edalatpour et al. (24) 

integrated sustainability concerns with pricing and 

inventory decisions for degrading items. Also, some 

researchers studided other aspects of EPQ issue (25-27). 

Figure 1 illustrates the number of papers published in this 

regard. 

According to the considerable literature on the 

economic production quantity model, it is evident that 

interest in the topic of an incomplete production system, 

a problem that affects real-world manufacturing, is still 

expanding. Since the model created in this work is 

challenging to solve analytically, Pareto fronts are 

discovered using a non-dominated sorting genetic 

algorithm (NSGA-II) and the non-dominated ranking 

genetic algorithm (NRGA). 

 

 

3. PROPOSED MATHEMATICAL MODEL 
 

In this section, the assumptions of the proposed model 

are explained first, and then the parameters and variables 

are defined; in the following, the problem’s mathematical 

model and the constraints’ definition are discussed in 

detail. 

 

3. 1. Assumptions   The main assumptions of the 

proposed model are as follows: 

• Considering a manufacturing system with flawed 

production procedures. 

• At a rate of ui; i=1,2,...,n every cycle, incomplete 

objects of n various sorts are produced, and among 

these goods, the SCi part is considered to be junk, 

while the other portion may be reworked. 

• In each cycle, most parameters are seen as 

unknown. 

• The parameters are produced randomly using 

uniform distributions in the respective ranges for 

various issues. 

• One machine is used to make all of the goods. 

• All things are believed to have a certain cycle 

length, T1=T2 =…=Tn=T. 

• Assume that the number of goods produced 

corresponds to a corresponding demand in every 

cycle, with a production rate of pi per cycle. 
 

 

 
Figure 1. Histogram representing the number of papers 

published in this regard 
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• It is assumed that the number of goods produced, 

which corresponds to a corresponding demand, di, 

in every cycle, has a production rate of pi per cycle 

for the i-th item. 

• At the end of the rework period, we expect that all 

reworkable objects will be reworked, and one part 

will be left behind as scrap 

• We expect all of the reworkable objects to be 

reworked, and a mi part will be left behind as scrap 

after the rework period. 

• Producers use the same resource for production and 

rework simultaneously. 

• The budget and capacity for the standard 

manufacturing system are limited, and some 

shortfalls are being backordered. The fundamental 

concept of the EPQ inventory model with the 

rework process is that the production rate of fewer 

defectives must always be more than or equal to the 

demand (28). The production cycle length is 

determined as the average of the good and 

incomplete item production up times ( 1
it  and 5

it , 

respectively), the reworking time ( 2
it ), and the 

good and incomplete item production downtimes (
3
it  and 4

it , respectively). 

5

1

j
i

j

T t
=

=  (1) 

Figure 2 depicts the cycle time for each product since 

all products are produced on a single machine with a 

limited capacity. This has led to the following equations: 

( )
1

1

s
i i i

i
i i i i i

q v s
t

p u sc p d
= −

− − −
 (2) 

1
s
i

i i
i

q
t u

p
=  (3) 

( ) ( )max
3 1 1i i i i si i i
i i

i i i i

sc m u uH v s
t q

d d p d

 − − +
= = − − 

 

 (4) 

 

 

 
Figure 2. On-hand inventory for perfect quality items 

4 i
i

i

s
t

d
=  (5) 

( )
5

1
i i

i
i i i i

v s
t

u sc p d
=

− − −
 (6) 

Thus, based on Equation 1, the length of the cycle for 

a single product is as follows: 

( )( )1
s
i

i i i i i i i
i

q
H u sc p d v s

p
= − − − −  (7) 

( )( )max 1
s
i

i i i i i i
i

q
H H u m p d

p
= + − −  

(8) 

( ) ( )( )max 1 1
s
i

i i i i i i i i i
i

q
H sc m u p u d v s

p
= − − − + −  

( ) ( )1 1 s
i i i i i i

i

v s sc m u q
T

d

− + − −
=  (9) 

( )
( )

1

1
i i is

i
i i i

Td v s
q

sc m u

− −
=

− −
 (10) 

 

3. 2. Function of the Total Cost      The following 

describes the model’s total cost function: 

TC CA CP CR CH CB CL= + + + + +  (11) 

 

3. 2. 1. Setup Cost         A setup costs and occurs N times 

annually. 

As a result, the yearly setup cost is as follows: 

1

n

i
i

CA NA
=

=  (12) 

1
N

T
=  (13) 

 

3. 2. 2. Production Cost      The sum of the total 

production cost is the sum of the production costs per unit 

and quantity per period for all i-th commodities, 

respectively of manufacturing annually: 

1

1 n
s

i i
i

CP c q
T =

=   (14) 

 

3. 2. 3. Rework Cost   ik  reflects how much of the i-th 

product has to be changed. The sum of the rework cost 

per unit of the i-th product is what is referred to as the 

annual rework cost. The year of work may be determined 

by multiplying the total cost by N. The cost of this shared 

insurance is as follows:  
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1

1 n
s

i i i
i

CR k u q
T =

=   (15) 

 

3. 2. 4. Holding Cost          The holding costs of the 

inventory system for independent and collaborative 

production strategies expressed in Equation 16 as shown 

in Figure 1,  

( ) ( ) ( )
max max

1 2 3

1

1

2 2 2

n
i i i i

i i i i
i

H H H H
CH h t t t

T =

 +
= + + 

 
  (16) 

 

3. 2. 5. Backorder Cost     Related to Figure 1, 

expressions 17 and 18 indicate the back-ordered and lost 

selling expenditures for each cycle. 

( )4 5

1

1

2

n

i i i i i
i

CB b v s t t
T =

= +  (17) 

( )
1

1
1

2

n

i i i
i

CL l v s
T =

= −  (18) 

 

3. 2. 6. Lost Sale Cost         As a consequence, the 

model’s objective function is as follows: 

( ) ( ) ( )

( ) ( )

1 1 1

max max
1 2 3

1

4 5

1 1

1 1 1

1

2 2 2

1 1
1

2 2

n n n
s s

i i i i i i
i i i

n
i i i i

i i i i
i

n n

i i i i i i i i
i i

TC CA CP CR CH CB CL

A c q k u q
T T T

H H H H
h t t t

T

b v s t t l v s
T T

= = =

=

= =

= + + + + +

= + +

 +
+ + + 

 

+ + + −

  



 

 
(19) 

 

3. 5. Cost of Storage Space as a Supply         The 

supply cost of a warehouse is determined as the product 

of the supply cost per storage space and the continuous 

random variables iX representing the storage area of a 

particular product, respectively. 

1

n

i i
i

G o X
=

=  (20) 

 

3. 6. Constraints       The related constraints are as 

follows: 

 

3. 6. 1. Capacity Constraint       In collaborative 

production systems that include rework, the combined 

production, rework, and setup times need to be less than 

the cycle time. In our issue, T must be less than or equal 

to ( )1 2 5

1 1

n n

i i i i
i i

t t t ts
= =

+ + +  . As a result, this is the capacity-

constrained model: 

( )1 2 5

1 1

n n

i i i i
i i

t t t ts T
= =

+ + +    (21) 

Equations 2, 3, and 6 give the capacity constraint model 

as follows:  

( )
( )

( )1 1

1
1

1

n n
i i i

i i
i ii i i i

Td v s
u ts T

sc m u p= =

− −
+ + 

− −
   (22) 

 

3. 6. 2. Budget Constraint          Given that the entire 

budget is W, the manufacturing quantity is represented, 

and the i-th is reworked s
i iu q . The current budget 

constraint is as follows: 

( )
1

n
s s

i i i i i
i

c q k u q W
=

+   (23) 

 

3. 6. 3. Service Level Constraint          For the service 

level constraint, the i-th product’s annual demand, safety 

margin for allowable shortage, period-by-period shortfall 

amount, and several periods are, in that order: Si, di, SL, 

and N. The current service level limitation is as follows: 

1

n
i

i i

s
SL

Td=

  (24) 

Constraints 22-24. 

    

3. 6. 4. Warehouse-Space Constraint       There is 

definite room in the warehouse to keep the goods. 

max
i i if H X  (25) 

 

3. 7. Final Model 

( )
( )

( )
( )

( )( )
( )

( )

( )
( ) ( )

1 1

1 1

11 1

1

11 1

1

11
1

2 1

1

1 1

1 0.5

n n
i i i

i i
i i i i i

n n
i i i

i i i
i ii i i

i i i
i i i i i i

i i i i

i i i i i

i i i i i i i i

i

Td v s
MinZ A C

T T sc m u

Td v s
k u h

T sc m u T

Td v s
u sc p d v s

sc m u p

Td v s v s

sc m u p u sc p d

u

= =

= =

− −
= + +

− −

− −
+

− −

  − −
− − − −    − −  

 − −
− +  − − − − − 

−

 

 

( ) ( )

( )( )
( )( )

( )
( )

( ) ( )( )( )
( )

( )

2

0.5 1 0.5

1

1

1

1

11
1 1

2 1

i
i i i i

i

i i
i i i

i i i i

i i i
i

i i i i

i i i
i i i i i i i i

i i i i i

d
sc m u u

p
v s

Td v s

sc m u p

Td v s
u

sc m u p

Td v s
sc m u p u d v s

d sc m u p







   
− − − +   

   
−  

 − −  
     − −   

 − −
  − − 

  − −
− − − + −    − −  

( )
( )

1 1

1 1
1

2 1 2

n n
i i i

i i i i i i
i ii i i i i

s v s
b v s l v s

T d u sc p d T= =







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
+ + + −  − − − 

 

 

(26) 



M. Najafi et al. / IJE TRANSACTIONS A: Basics  Vol. 37 No. 07, (July 2024)   1408-1421                                          1413 

 

1

n

i i
i

Min G o X
=

=  

s.t. 

( )
( )

( )1

1

1

n
i i i

i i i
i i i i

Td v s
c k u W

sc m u=

 − −
+   − − 

  (27) 

( ) ( )( )( )
( )

( )

1
1 1

1
i i i

i i i i i i i i i i
i i i i

Td v s
f sc m u p u d v s X

sc m u p

  − −
− − − + −     − −  

 
(28) 

 

 

4. SOLUTION APPROACHES 
 

In terms of approaches to solutions For reactive berth 

allocation and scheduling at maritime container ports in 

reaction to disturbances, Dulebenets (29) took into 

consideration a dispersed memetic optimizer. An 

adaptable polyploid memetic algorithm was also 

considered by Dulebenets (30) for truck scheduling at a 

cross-docking terminal. In multi-objective settings, 

Pasha et al. (31) used a factory-in-a-box to look at precise 

and metaheuristic algorithms for the vehicle routing 

issue. Singh and Pillay (32) considered analyzing ant-

based pheromone spaces for generating perturbative 

meta-heuristics. The development of precise and 

heuristic optimization techniques for safety enhancement 

projects at level crossings under competing goals was 

considered by Singh et al. (33). Chen and Tan (34) 

provide a quick, self-adaptive, efficient fireworks 

approach for large-scale optimization. An effective 

multi-objective metaheuristic algorithm for the 

sustainable harvest planning issue was considered by 

Fathollahi-Fard et al. (35). 

 

4. 1. Augmented Epsilon-Constraint Method       The 

augmented epsilon-constraint method is a technique used 

in multi-objective optimization to handle constraints in 

the optimization process. Multi-objective optimization 

involves optimizing multiple conflicting objectives 

simultaneously, and constraints are conditions that must 

be satisfied for a solution to be considered feasible. 

In the augmented epsilon-constraint method, the idea 

is to transform the constrained multi-objective 

optimization problem into an unconstrained one by 

introducing additional variables and constraints. The 

method is particularly useful when dealing with problems 

where finding feasible solutions is challenging. 

Here's a basic overview of the augmented epsilon-

constraint method: 

• Original Problem: Let's say you have a multi-

objective optimization problem with objectives 

( ) ( ) ( )1 2, ,..., mf x f x f x    , and constraint functions, 

( ) ( ) ( )1 2, ,..., pg x g x g x where x is the vector of 

decision variables. 

• Introduce Slack Variables: Introduce slack 

variables ( )1 2, ,..., p     to represent the violation of 

each constraint. These slack variables are non-

negative and measure how much a solution violates 

a particular constraint. 

• Transform Constraints: Transform the original 

constraints into equality constraints using the slack 

variables. The transformed constraints may look 

like this:  

( ) 0 1,2,...,i ig x i p+ = =  where 0i   

• Augmented Objective Function: Modify the 

objective functions to penalize violations of 

constraints. The augmented objective function may 

include a penalty term that depends on the slack 

variables:  

• ( ) ( ) ( ) ( )( )1 2 1 2, ,..., , 1, 2,...,m pF x f x f x f x p  =      

Here, 1 2, ,..., p    are penalty coefficients. 

• Optimization: Solve the augmented unconstrained 

problem using a multi-objective optimization 

algorithm. The algorithm seeks to optimize the 

augmented objective function, and the penalty 

terms encourage the optimization process to find 

solutions that minimize violations of constraints. 

• Post-Processing: After obtaining solutions from 

the augmented problem, analyze the trade-offs 

between conflicting objectives and check the values 

of slack variables to ensure constraint satisfaction. 

The augmented epsilon-constraint method helps 

convert a constrained multi-objective optimization 

problem into a form that can be addressed by standard 

multi-objective optimization algorithms. This approach 

allows for a more flexible and efficient exploration of the 

solution space in the presence of constraints (36).  

Hybrid multiobjective optimization problems involve 

single-objective optimization using multicriteria 

decision-making methods and single-objective 

evolutionary algorithms (SOEA) like NSGA-II, NRGA, 

and MOPSO for finding Pareto optimal fronts in a single 

simulation run. 

 

4. 2. NSGA-II          Deb et al. (37) developed the NSGA-

II, a GA-based multi-objective optimization technique. 

They created a random parent population of size (nPop), 

assessed objective values, and sorted using the 

nondomination method. They selected two individuals 

and formed a new offspring population with nPop + n 

sizes. The NSGA-II implementation produced non-

dominated Pareto-optimum solutions. 

 

4. 3. NRGA           The NRGA works identically to NSGA-

II, except for selecting and reproducing the parents in the 

mating pool. Before using the Pareto-based population-

ranking approach, one of the fronts is chosen using the 

ranked-based roulette wheel (RBRW)  selection operator, 
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initially proposed by Al Jadaan et al. (38, 39). The 

Pseudo-code of the NSGA-II stated in Figure 3.  

The next step is to choose one option from the 

candidate front using the same method. Consequently, 

the chances of picking a solution inside the best non-

dominated set of the initial front are greatest. In contrast, 

solutions inside a set of the second front have lower 

probability, and so on. 

 

4. 4. Algorithms’ Characteristics 
4. 4. 1. Chromosome Structure          Chromosomes 

are gene collections arranged in a specific order. 

Designing an appropriate chromosomal structure is 

crucial for algorithm execution. The study’s 

chromosomal solution is represented as a 2n matrix, 

displaying storage space, low supply, shortfall, and 

storage locations for each commodity. Figure 4 shows 

this graphically. 

 
4. 5. Algorithms’ Mechanism       This part explains 

the crossover, mutation, evaluation function, and stop 

criteria of the two algorithms’ four key characteristics. 

 

4. 5. 1. Crossover Operator      A crossover process 

involves DNA switching between parent chromosomes, 

creating better chromosomes and favorable genes for 

offspring. This study generates offspring using linear 

chromosome vectors and arithmetic crossover operators 

with a random weighting factor 

( )1 1 21offspring parent parent =  + −   (29) 

( )2 1 21offspring parent parent = −  +   (30) 

 

4. 5. 2. Mutation Operator        Mutation preserves  
 
 

 

1. Create Npop random solutions (Initialization) 

2. Determine the values of the objective function for the first 

solutions. 

3. Determine rankings for the solutions using Goldberg’s 

ranking method  

4. Determine the crowding distance. 

5. While stop requirements are not met 

a.   Create the mating pool and add individuals to 

it using binary tournament selection. 

b.  To the mating pool, apply the crossover and 

mutation operators. 

c. To the new solutions’ objective function values. 

d. Combine the existing populace with the newly 

developed solutions. 

e.  Determine rank using the Goldberg’s ranking 

method. 

f.  Determine the crowding distance. 

g.  Group people and choose superior options. 

Stop while 
 

Figure 3. Pseudo-code of the NSGA-II 

1 2

1 2

i n

i n

X X X X

s s s s

 
 
 

 

Figure 4. Structure of a chromosome 

 

 

genetic diversity in populations, protecting against data 

loss. In this regard, firstly, we chose a normal random 

variable, then by substituting in Expression 32 regarding 

  between zero and one, we obtain  after that if   is 

positive Expression 34 is regarded else Expression 36 is 

taken into account. Note that Upperbound is one and 

lowerbound is zero; they are updated during algorithm 

processing. 

( )~ 0,1z Normal  (31) 

( )tanh z =   (32) 

if 0   (33) 

( )offspring parent Uperbound parent= +  −  (34) 

else  (35) 

( )offspring parent parent Lowerbound= +  −  (36) 

 

4. 5. 3. Controlled Elitism        In the NSGA-II, elitism 

is regulated to balance maintaining high-quality solutions 

and preserving diversity in the population. This is crucial 

because excessive elitism can lead to premature 

convergence (where the algorithm converges to sub-

optimal solutions early). In contrast, insufficient elitism 

can lead to a loss of good solutions. 

 

4. 5. 4. Evaluation        The fitness of chromosomes in 

each generation is assessed using the optimization 

model’s objective function. However, the inventory 

model has four limitations, making synthetic 

chromosomes unlikely. A penalty function is used to 

increase the likelihood of constraint violations, defining 

the penalty and fitness function. 

4

1

inf
4

0 f

i

i

E
If the chromosome easible region

Penalty function

If the chromosome easible region

=




= 
 


 

(37) 

Fitness function = Penalty function + Objective function    

 

4. 5. 5. Stopping Criterion       A stopping condition in 

the MOEA leads to Pareto-optimal solutions, eliminating 

the need for mutation and crossover operators. After a 

certain number of generations, algorithms are believed to 

be finished. Finding an early perfect solution requires 

both the NSGA-II and NRGA algorithms in MATLAB 

8.20 and statistical techniques. 
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5. NUMERICAL RESULTS 
 

In this step, twenty test problems are regarded, ranging 

from the size of the two products to twenty products. 

Also, related parameters are generated randomly 

following uniform distribution between associated 

bounds. Table 1 displays the ranges’ of numerical data. 

Firstly, we report solutions obtained by GAMS 

commercial software for all twenty test problems as the 

best-quality solutions. For the augmented epsilon-

constraint method, this approach outperforms two other 

solution approaches regarding the quality metric index. 

Thus, we did not consider it. The number of Pareto front 

solutions oscillates between 400 and 500. However, for 

other criteria, no specific trend exists. However, the 

Pareto front curve is the best compared to other methods, 

and convexity is outward. 

To perform in the best condition regarding two 

metaheuristic approaches. We chose six factors for each 

of the three levels. Table 3 shows the factors and related 

levels. Then, using Minitab software, we generated 

orthogonal arrays, and for specific levels, we obtained the 

metrics mentioned above. We obtained weighted values 

after normalizing the solution and determining positive 

or negative indexes. At last, the distance from the 

maximum value of weighted sum values is computed. 

The distance from the maximum as the best solution 

should be minimized. Tables 4 to 5 show the numerical 

results, and Figures 5 to 6 show the optimum level of 

regarded factors (less response value is better). 

We used the Topsis approach, a multi-attribute 

decision-making approach, to decide which algorithm 

was better. Results show that the NRGA outperforms the 

NSGA-II regarding related indexes. For further 

information refer to literture [32]. 

 

 
TABLE 1. Parameter range 

A ~uniform [500 1900] 

c ~uniform  [6 34] 

d ~uniform [150 1000] 

v ~uniform [0.5 0.7] 

sc~uniform[0.045 0.065] 

m ~uniform [0.02 0.04] 

u ~uniform  [0.05 0.25] 

k ~uniform  [1 15] 

h ~uniform  [2 30] 

p ~uniform [5000 

12000] 

b ~uniform  [5 33] 

l ~uniform   [1 29] 

ts ~uniform 

[0.0003 0.0007] 

f ~uniform  [2 5] 

o ~uniform [3 10] 

W=20000000     SL=0.99999 
 

 
 
 
TABLE 2. Problems vs. obtained indexes related to the augmented epsilon-constraints method executed by GAMS commercial 

software 

Problem 
Pareto front metric Objective function mean values Computational 

time No. of non-dominated solutions Spacing metric Mean z1 Mean z2 

1 429 6.0161 33020.6 11022.1 711 

2 491 6.2039 68276.68 7271.221 291 

3 329 0.08952 109109 13461.52 229 

4 492 5.7082 126659.1 17500.58 270 

5 490 6.0684 156536.3 20625.78 256 

6 389 7.2765 190277.9 34970.78 271 

7 490 3.927 223838.8 32008.53 309 

8 492 4.1316 225652.9 25609.38 345 

9 491 3.1453 206231.8 30771.12 318 

10 2 0 151504.9 145595.4 37 

11 1 0 176127 1119.57 20 

12 1 0 205488.2 1190.5 20 

13 1 0 177252.2 1432.92 20 

14 Infeasible 

15 492 2.1907 351029.9 49065.39 338 

16 490 1.856 401399.8 54128.24 435 

17 489 2.0345 449593.3 59183.4 539 

18 491 1.8456 424752 77587.54 533 

19 489 1.563 521761.7 62907.14 417 

20 490 1.6378 470140 62391.54 332 
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TABLE 3. Considered structural parameters and levels of 

both algorithms 

Factors 
Levels 

1 2 3 

nPop 30 50 70 

MaxIt 30 50 70 

pCrossover 0.3 0.5 0.7 

pMutation 0.3 0.5 0.7 

Gamma 0.3 0.5 0.7 

ControlledElitisimParameter 0.3 0.5 0.7 

 

 
Figure 5. Levels vs. response values related to the NSGA-II 

algorithm (less response value is better) 

 
 
 

TABLE 4. Orthogonal arrays vs. obtained indexes related to the NSGA-II 

Array 
Pareto front metric Objective function mean values 

Computational time 
Number of non-dominated solutions Spacing metric QM Mean z1 Mean z2 

1 18 2.18 1 5.37E+06 1.73E+05 2.385609 

2 6 1.92 0 5.75E+06 1.51E+05 2.827144 

3 6 1.35 1 4.59E+06 1.56E+05 2.868053 

4 7 1.25 0 3.65E+06 1.27E+05 5.840853 

5 7 1.74 0 3.39E+06 1.22E+05 6.133792 

6 4 0.44 1 2.00E+06 7.32E+04 6.862424 

7 4 0.94 1 2.19E+06 7.37E+04 12.0195 

8 2 0 0 1.21E+06 3.96E+04 12.77704 

9 1 0 1 6.85E+05 2.38E+04 13.75613 

10 15 0.57 0 3.51E+06 1.27E+05 10.614 

11 1 0 1 2.37E+06 8.86E+04 11.75421 

12 12 1.226 0 4.49E+06 1.47E+05 13.51858 

13 19 2.38 0 4.20E+06 1.52E+05 13.30175 

14 7 1.59 1 3.28E+06 1.03E+05 14.68792 

15 6 0.93 0 2.80E+06 8.92E+04 15.39808 

16 4 0.63 1 2.54E+06 8.74E+04 18.23107 

17 5 1.75 0 3.07E+06 1.09E+05 17.88389 

18 1 0 0 1.48E+06 4.86E+04 21.27136 

19 7 1.47 1 3.87E+06 1.37E+05 18.79754 

20 2 0 0.22 3.17E+06 1.11E+05 19.69584 

21 4 1.076 0.2 3.00E+06 1.01E+05 19.88637 

22 1 0 1 2.31E+06 7.88E+04 29.65523 

23 4 1.21 0 2.21E+06 7.79E+04 29.67642 

24 2 0 0 1.42E+06 5.02E+04 32.4939 

25 11 1.13 0 3.13E+06 1.05E+05 32.45348 

26 4 0.066 0 2.38E+06 8.18E+04 34.08444 

27 2 0 1 9.92E+05 3.22E+04 42.43041 
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TABLE 5. Orthogonal arrays vs. indexes related to the NRGA 

Array 
Pareto front metric Objective function mean values 

Computational time 
Number of non-dominated solutions Spacing metric QM Mean z1 Mean z2 

1 21 2.14 0 7.01E+05 1.88E+05 2.628553 

2 12 1.39 1 4.66E+05 1.40E+05 2.805269 

3 8 0.88 0 6.22E+05 1.92E+05 2.751699 

4 16 0.913 1 2.71E+05 9.74E+04 6.375257 

5 2 0 1 3.38E+05 1.02E+05 7.816881 

6 8 2.39 0 4.64E+05 1.44E+05 6.523603 

7 3 1.7 0 3.10E+05 9.70E+04 14.80842 

8 2 0 1 1.06E+05 3.51E+04 13.41777 

9 1 0 0 7.08E+04 2.39E+04 15.72957 

10 5 1.11 1 2.93E+05 1.04E+05 12.59192 

11 3 0.006 0 4.04E+05 1.32E+05 15.59124 

12 4 0.88 1 2.96E+05 1.03E+05 13.4974 

13 12 1.53 1 4.04E+05 1.26E+05 17.41597 

14 11 1.43 0 3.94E+05 1.24E+05 15.31773 

15 1 0 1 2.31E+05 7.77E+04 15.9429 

16 2 0 0 2.65E+05 9.03E+04 18.27887 

17 1 0 1 1.79E+05 6.76E+04 23.95663 

18 2 0 1 7.97E+04 2.63E+04 32.82435 

19 22 0.71 0 4.53E+05 1.54E+05 22.75148 

20 8 1.42 0.77 2.95E+05 1.14E+05 24.62209 

21 4 1.92 0.8 3.01E+05 9.90E+04 21.58282 

22 4 0.94 0 2.67E+05 9.48E+04 34.73219 

23 1 0 1 1.10E+05 3.49E+04 42.13635 

24 1 0 1 9.14E+04 2.80E+04 40.36455 

25 8 0.55 1 2.41E+05 8.30E+04 37.56112 

26 2 0 1 1.13E+05 3.77E+04 39.72398 

27 2 0 0 1.19E+05 3.82E+04 53.15664 

 

 
TABLE 6. Problems vs. obtained indexes related to the NSGA-II 

Problem 
Pareto front metric Objective function mean values 

Computational time 
Number of non-dominated solutions Spacing metric QM Mean z1 Mean z2 

1 3 1.5089 1 1.72E+05 6.97E+03 11.99048 

2 10 0.75766 0.21622 9.80E+05 1.27E+04 11.09406 

3 11 0.88645 0.44 4.25E+06 1.28E+04 13.00945 

4 13 0.80206 0.20588 3.90E+06 2.34E+04 12.14553 

5 12 1.0162 0.083333 4.89E+06 2.37E+04 13.08017 

6 9 0.87584 0.29167 6.70E+06 3.27E+04 11.87017 

7 11 0.95535 0.19355 9.09E+06 3.91E+04 11.83453 

8 11 0.84226 0.91667 6.78E+06 31495.19 12.17597 

9 14 1.1263 0.34286 7.07E+06 46441.94 12.5615 
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10 10 0.69828 0.34783 9.34E+06 55771.99 12.04777 

11 11 1.0172 1 1.11E+07 59469.65 12.2284 

12 11 1.1176 1 1.19E+07 59824.82 12.26202 

13 10 0.79429 1 1.37E+07 67954.2 12.0311 

14 12 0.71965 1 2.00E+07 73020.04 12.36023 

15 9 1.364 0.29412 2.52E+07 90003.51 11.13272 

16 12 1.8151 0.90909 2.67E+07 103629.3 11.90267 

17 12 0.7592 0 2.27E+07 106882.5 11.68452 

18 10 0.61745 1 1.89E+07 115649.1 12.14915 

19 10 1.2073 0 3.96E+07 112046.6 11.08706 

20 9 0.37443 0.28 3.46E+07 126621.2 11.36034 

 

 
TABLE 7. Problems vs. obtained indexes related to the NRGA 

Problem 
Pareto front metric Objective function mean values 

Computational time 
Number of non-dominated solutions Spacing metric QM Mean z1 Mean z2 

1 6 1.4405 0 17220.22 6971.906 34.33418 

2 36 2.2765 0.78378 97960.15 12584.02 20.96036 

3 36 0.93509 0.56 415115.9 13117.35 20.67863 

4 35 1.4365 0.79412 394099.5 22696.6 21.08452 

5 35 1.4198 0.91667 485820.9 23265.65 21.11902 

6 34 0.83329 0.70833 678311.7 31882.03 21.18444 

7 35 0.95884 0.80645 882258.1 39061.81 21.10709 

8 33 1.5107 0.083333 671786.3 32377.67 21.0122 

9 35 0.86176 0.65714 680924.6 47891.94 20.27082 

10 35 1.0508 0.65217 950517.3 56985.32 20.27982 

11 34 1.4061 0 1135262 66045.51 20.00956 

12 33 1.1839 0 1231447 64292.26 20.86337 

13 36 1.9886 0 1462616 77532.3 19.67027 

14 29 2.0254 0 2152912 91681.01 19.55916 

15 33 2.5172 0.70588 2604750 89019.46 19.9761 

16 34 2.4407 0.090909 2675543 109897.8 19.36939 

17 7 2.3533 1 1949359 88772.28 20.74752 

18 15 1.9437 0 2098233 115609.2 19.69793 

19 3 1.1994 1 3200771 104068.1 20.23629 

20 32 2.1377 0.72 2996309 134638.6 18.99066 

 

 

 
TABLE 8. Topsis final score decision matrix 

 Indexes 

Alternatives No. of non-dominated solutions Spacing metric QM Mean z1 Mean z2 Computational time 

NSGA-II 0.35 0.52 0.74 0.72 0.7 0.495 

NRGA 0.93 0.86 0.67 0.69 0.72 0.86 

 



M. Najafi et al. / IJE TRANSACTIONS A: Basics  Vol. 37 No. 07, (July 2024)   1408-1421                                          1419 

 

 

 
Figure 6. Levels vs. response values related to the NRGA 

algorithm (less response value is better) 
 

 

Figure 7 shows the obtained Pareto front by three 

approaches. Solving problem shows that the best quality 

is related to the GAMS commercial software (the 

augmented epsilon-constraint). The NSGA-II yields 

more Pareto solutions; however, NRGA solutions are 

closest to the ideal point (origin). As a whole, the conflict 

between objective functions is strongly evident. 

 

 

 
Figure 7. Obtained Pareto front regarding two meta-

heuristic algorithms (NSGA-II and NRGA) and GAMS 

(augmented epsilon-constraint method) 

 

 

6. CONCLUDING REMARKS AND SUGGESTIONS 
 

This study utilized a partial back ordering, rework, and 

garbage EPQ model to minimize manufacturing facility 

costs and warehouse space supply costs.  We investigate 

two separate objective functions regarding operational 

constraints. Regarding the research literature gap, we 

contributed our novelty (developing the mathematical 

model and using solution approaches). First, the best 

solutions obtained by GAMS software were presented 

using the augmented epsilon-constraint method. Due to 

the complexity of the related model, The model was 

solved using the NSGA-II and NRGA approaches. 

Various Pareto front indexes were considered, and we 

tuned the structural parameters of these two algorithms 

using the Taguchi method. Numerous test problems were 

investigated and reported all of them meticulously. The 

obtained Pareto front confirms the conflict between 

objective functions. Topsis method was used to specify 

the best approaches. As a whole, GAMS yields the best 

quality solutions. However, in a large size, the two 

aforementioned algorithms are justifiable.  

Future research should consider using various meta-

heuristics, comparing performance metrics, accounting 

for uncertain parameters, and considering multi-product 

systems with multiple stages and product limits.  
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Persian Abstract 

 چکیده 
گیرد تا مقدار تولیدی را بیابد که مجموع های کمبود را در نظر میهای نگهداری و هزینه اندازی، هزینه های راهنرخ تولید، نرخ تقاضا، هزینه  (EPQ) مقدار تولید اقتصادی مدل

در این مقاله، دو هدف شامل هزینه های تولید  .هدف متعادل کردن هزینه های مرتبط با تولید، نگهداری موجودی و کمبودهای احتمالی است .حداقل برساندها را به این هزینه 

مدل  .گیرددر نظر می  EPQاین مطالعه ضایعات و کار مجدد را در مدل   .سازی قرار است تا به حداقل برسددر هدف دوم هزینه فضای ذخیره و سفارش مورد نظر است

با تعیین مقدار محصولات  .یابد و زمانی که فقط یک دستگاه وجود داشته باشد کمبودهایی وجود داردظرفیت تولید کاهش می  .موجودی برای اقلام در یک ماشین مورد نظر است

 .کمیاب محصول، می توان هم هزینه کلی و هم هزینه تامین فضای انبار و کاهش دادتولید شده توسط واحد تولیدی، فضای ذخیره سازی برای هر محصول، زمان چرخه و  

ها با یافته  .استفاده شده است (NSGA-II) برای حل از نرم افزار تجاری و در ابعاد بزرگ، از یک الگوریتم فراابتکاری چندهدفه، یعنی الگوریتم ژنتیک مرتب سازی غیر غالب 

برای اجرای این   .همچنین جبهه پارتو به دست آمده با چند شاخص مورد مطالعه قرار می گیرد .اعتبار بیشتری دارند (NRGA) بندی غیرمسلطاستفاده از الگوریتم ژنتیک رتبه

دودیت اپسیلون ادغام شده، اجرا  همچنین برای اعتبارسنجی مدل ریاضی، از روش مح شد.های متعامد مربوطه استفادهدو الگوریتم در بهترین شرایط، از رویکرد تاگوچی و آرایه

واضح است که نرم افزار تجاری نتایج بهتری به همراه دارد، اما استفاده از این دو الگوریتم زمانی قابل توجیه هستند که ابعاد بزرگتر   .استفاده کردیم  GAMSشده در محیط  

همچنین الگوریتم برتر با استفاده از   .شودهای پیشنهادی با جزئیات مقایسه و بررسی می ها و توابع هدف، رفتار الگوریتمدر نهایت با انجام تحلیل حساسیت این شاخص .شود

مثال های عددی نشان می دهد که چگونه مدل ارائه شده و الگوریتم های پیشنهادی ممکن  .به عنوان یک روش تصمیم گیری چند معیاره انتخاب شده است TOPSIS روش

 .اندحل تا کنون مورد بررسی قرار نگرفته ها و رویکردهای راه کند که توابع هدف مرتبط، محدودیتبررسی ادبیات روشن می  .اده قرار گیرنداست به طور موثر مورد استف
 

 

 
 

 
 

 


