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A B S T R A C T  
 

 

The aim of this paper is to propose a new method for controller design using control places in special 

hybrid Petri Nets called Hybrid-Time Delay-Petri Nets (HTDPN). Most control approaches use the 

control place of the supervisory control for discrete Petri Nets. However, the new approach uses the 
place to control the linear dynamical systems which are modeled by the HTDPN tool.  This controller 

consists of control places, transitions, arcs connected to the control place, and weights of the arcs, which 

are added to the HTDPN model of the system. In this paper, there are three main steps for the controller 
design. In the first step, the plant is modeled using the HTDPN tool, and in the second step, a controller 

is designed using the novel method presented. Finally, the weights of arcs connected to the control place 

are computed using the Lyapunov function theory, which guarantees closed-loop stability. The main 
advantage of this method is the possibility of using continuous and discrete places simultaneously in 

nonlinear systems. Unlike most previous approaches, in the proposed method, an expert designer can 

create a favorite controller in the graphical environment, and then apply changes to the mathematical 
environment of the HTDPN model. The performance of the proposed controller is evaluated by a 

comparative study. The comparison criteria in this article are: error criteria (IEA), energy consumption, 

rise time, settling time and simulation run time. The simulation results showed that the proposed method 
was 45% and 600% better conditions than the Model Predictive Conrol (MPC) and optimal control 

methods, respectively. 

doi: 10.5829/ije.2023.36.10a.12 
 

 
1. INTRODUCTION1 
 

In new systems such as traffic systems, biological 

systems, etc., they are described by differential 

equations, therefore, they are motivated to develop new 

methods for analysis, modeling, evaluation and control of 

systems [1-3]. One of the most successful modeling 

approaches is Petri Nets [4]. 

The control of dynamic systems which are modeled 

by the HTDPN tool has been a matter of great interest. In 

the last decade, several researchers have been working on 

the control based on discrete Petri Nets [5, 6]. 

Supervisory control is one of the essential methods for 

controller design in Discrete Event Systems (DES) using 

Petri Nets tool [7]. In supervisory control, the behavior 

of the system is controlled by adding places and 

transitions [8]. Demongodin and Koussoulas [9, 10] 

modeled a controller which was designed based on 

supervisory control for the industrial system by 
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differential Petri Nets. In the articles mentioned, 

differential equation modeling was carried out by Petri 

Nets, which requires the use of new definitions such as 

discrete implicit differential transition. Saleh et al. [11], 

a hybrid adaptive Petri Nets is introduced, in which 

transition commutes between discrete and continuous 

behavior depending on a threshold. Ruan and Li [12], for 

the control of traffic, first, a macroscopic model based on 

continuous Petri Nets is proposed, and then predictive 

control laws that improve the behavior of traffic systems 

are designed. Taleb et al. [13] designed a model 

predictive control for timed continuous Petri Nets 

systems. In the methods mentioned, controllers are 

designed based on the system variables that are generally 

flow. Continuous systems theory is often described by 

continuous-time differential or discrete-time differential 

equations. Therefore, this tool could not be practical to 

apply to all dynamic systems [14, 15]. 
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Previous attempts have been made to model and 

control continuous linear dynamic systems, which are 

modeled by differential equations using Petri Nets. 

Dideban. and Ahangarani Farahani [16] also designed an 

output feedback controller based on modified Petri Nets. 

Modified Petri Nets was introduced by Dideban et al. 

[17], where a discrete transfer function is modeled by 

Petri Nets. A PID controller based Petri Nets was also 

proposed by Dideban et al. [18] and Ahangarani Farahani 

[19]. In these works, some new concepts were added to 

the conventional Petri Nets, making them rather difficult 

to be analyzed. The state feedback controller by the 

Continuous-Time Delay-Petri Nets tool without adding 

new elements to Petri Nets has been presented by 

Ahangarani Farahani and Dideban [20]. In the following, 

the Hybrid Time Delay Petri Net is introduced as a tool 

for modeling systems with the current sample time 

signals, including various subsystems, and multi-mode 

systems [21]. Then a PID controller is designed in which 

the gains are tuned by the intelligent method. In all the 

introduced tools, none of the methods provide a 

controller design based on the graphical and 

mathematical capabilities of the continuous Petri Nets 

tool for dynamical systems.  

The control place approach is an important method in 

the control of discrete event systems modeled by Petri 

Nets. Ma et al. [22] developed an algorithm an optimal 

control sequence in Petri Nets for designing, which 

drives a plant net from a source marking to a set of target 

markings without passing any pregiven forbidden 

markings. A shunt active power filter (SAPF) based on a 

three-phase serial flying capacitor multilevel inverter 

(FCMI) controlled using a Petri net tool is presented by 

Othman et al. [23]. This controller design is based on the 

structure of the investigated system and according to the 

capabilities of the Petri net for the control of discrete 

event systems. Bashir et al. [24] attempted to prevent 

deadlock in a manufacturing system, the design of 

supervisory control which was done based on the Petri 

Net tool and using the combination of place and transition 

control. Here, the combination of place and transition has 

been given flexibility to the designer.  Chenand Hu [25] 

used the developed place-invariant control in automated 

manufacturing systems based on the Petri Nets tool. In 

this article, the extended place-invariant control principle 

is initially proposed. Second, three types of place-

invariant, from the special to general, are developed. 

Finally, the use of this principle is presented to simplify 

the design of supervisory control. In these articles, all 

methods and controllers based on Petri Nets are designed 

for discrete event systems and to prevent the system from 

entering unsafe conditions. Therefore, these methods 

cannot be used for dynamic systems that are described by 

differential equations and discrete events, such as 

HTDPN. 

The principal contribution of this article is to use the 

idea of control place to design controllers in linear 

dynamic systems which are modeled by the HTDPN tool. 

In the proposed approach, the use of control places 

technique, which is used for the supervisory control of 

conventional Petri Nets, is extended to HTDPN. Unlike 

classic control methods for dynamic systems, an 

important feature of this novel controller is the use of 

Petri Nets graphics capabilities. In this method, the user 

can design the controller by adding control places to the 

HTDPN model in the graphical environment. The 

designed controller is easily applied to the mathematical 

part by the incidence matrix. Therefore, controller design 

is done in the graphical environment instead of the 

mathematical environment   . In other words, here, the 

controller design methods for discrete event systems are 

used to design the controller of the dynamic system 

modeled with a HTDPN. In this paper, the relationship 

between the control places and other components are 

determined using the GA (Genetic Algorithm) method. 

Another innovation in this article is to present the use of 

Lyapunov's theory to prove stability in Petri Nets based 

on the incidence matrix. Here, by applying the Lyapunov 

stability theory on the incidence matrix, the weights of 

the arcs connected to control place or the control 

coefficients are obtained. The ability to use continuous 

and discrete places simultaneously enables us to design a 

suitable controller in some nonlinear systems. Another 

innovation of this paper is the use of Lyapunov stability 

concepts for the mathematical part of the Petri Nets and 

its use for controller design. The simulation results show 

that the implementation of this control method using Petri 

Nets capabilities has better accuracy and less energy 

consumption than optimal control and MPC Method. 

The paper is structured as follows. In section 2,  the 

main concepts, definitions, and mathematics of the 

Continuous and Hybrid-Time Delay-Petri Nets are 

proposed. Controller design and stability proof based on 

Lyapunov theory in  the HTDPN is presented in section 

3. The dynamic model of the capsubot robot and the 

implementation of the control method on the system are 

presented in section 4. Section 5 is dedicated to 

simulation results, and finally, the conclusion is given in 

section 6. 
 

 

2. CONTINUOUS AND HYBRID-TIME DELAY-PETRI 
NETS  
 
In this section, the CTDPN and HTDPN tool, definitions, 

and properties are provided. In addition, the 

mathematical equation has been developed for the 

HTDPN tool.  

A CTDPN is a mathematical and graphical modeling 

tool for dynamical systems, which are described by 
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difference equations. The CTDPN tool is defined as 

follows [20]: 

Definition 1: A Continuous -Time Delay-Petri Nets 

(CTDPN) is a 6-tuple PNC =
{P, T,W-(Pre),W+(Post), M0,  Ts} such that: 

𝑃 = {𝑝1, 𝑝2, ⋯ , 𝑝𝑛} and 𝑇 = {𝑡1, 𝑡2, ⋯ , 𝑡𝑚} are finite sets 

of continuous places and transitions, respectively.  

𝑃𝑟𝑒 and 𝑃𝑜𝑠𝑡 are the incidence functions that specify 

the multiplicity of arcs between places and transitions. 

𝑀0𝜖ℝ is the initial marking vector, and 𝑇𝑠 is the time 

interval between each run cycle. To model the continuous 

dynamic system using the CTDPN, the following 

assumptions and rules should be considered: 

Continuous transitions are corresponding to time 

delays. 

In the CTDPN, 𝑀 ∈ ℝ𝑛. 

The enabling degree of a transition 𝑡𝑗 at a marking 𝑀(𝑝𝑖) 

is defined as: 

𝑞(𝑡𝑗 ,𝑚) = min
𝑖:𝑝𝑖∈

°𝑡𝑗
(

𝑀(𝑝𝑖)

𝑃𝑟𝑒(𝑝𝑖,𝑡𝑗)
)  (1) 

A continuous transition 𝑡𝑗 ∈ 𝑇 is enabled, i.e., it can fire, 

if 

|𝑀(𝑝𝑖)| > 0 ∀𝑝𝑖 ∈
° 𝑡𝑗 

where 𝑡0 𝑗 = {𝑝𝑖 ∈ 𝑃|𝑃𝑟𝑒(𝑝𝑖 , 𝑡𝑗) > 0} is the input place. 

In the CTDPN tool the weights of the arcs can be negative 

or non-negative real numbers. 

Property 1: The continuous transitions speed in the 

CTDPN used in the linear system are determined by the 

input place tokens (𝑀(𝑝𝑖)) divided by the sampling time 

(𝑇𝑠).  

𝑣𝑗 =
𝑀(𝑝𝑖)

𝑇𝑠
  (2) 

Proof: Proof is given in appendix. 

Property 2: The fundamental state equation of the 

CTDPN can be written as follows: 

𝑚(𝑛) = 𝑚(𝑛 − 1) +𝑊𝑚(𝑛 − 1) (3) 

Proof: Proof is given in appendix. 

Property 3: The eigenvalues of the dynamical system are 

equal to the eigenvalues of the 𝑊+matrix by removing 

the value of zero.  

Proof: Proof is given by Ahangarani Farahani and 

Dideban [20].  

A HTDPN is a modeling tool to model dynamic systems 

such as systems with current sample time signals, system 

including various subsystems and multi-mode systems. 

Definition 2: A HTDPN is defined as PNH =
{P, T,W-(Pre),W+(Post), M0,  h, Ts}, where 

𝑃 = {𝑝1, 𝑝2, ⋯ , 𝑝𝑛} and 𝑇 = {𝑡1, 𝑡2, ⋯ , 𝑡𝑚} are a finite, 

not empty, set of continuous and discrete places and 

transitions, respectively. 𝑃𝑟𝑒 and 𝑃𝑜𝑠𝑡 are the backward 

and forward incidence mappings. 𝑀0 and 𝑇𝑠 were 

introduced in definition 1. ℎ: 𝑃 ∪ 𝑇 → {𝐶, 𝐷} is a hybrid 

function which indicates whether each node is a discrete 

node or a continuous node. In HTDPN, discrete 

transitions are initially executed [20]. 

To illustrate this tool, consider the net in Figure 1. All 

concepts that can be modeled to HTDPN are shown in 

this figure. Places 𝑝1 and 𝑝2 and transitions 𝑡1and 𝑡2 are 

continuous places and transitions, respectively. Places 𝑝3 

and 𝑝4 and transitions 𝑡3 and 𝑡4 are discrete places and 

transitions, respectively.  

Here, transition 𝑡1 is enabled only if there is at least 

one token in 𝑝3 and 𝑀(𝑝1) > 0. Therefore the speed of 

transitions 𝑡1 and 𝑡2can be written as follows: 

𝑣1 =
𝑀(𝑝1)

𝑇𝑠
,    𝑣2 =

𝑀(𝑝2)

𝑇𝑠
 (4) 

However, the following assumptions and rules should be 

considered: 

Continuous transitions are corresponding to time delays. 

In the HTDPN, continuous places contain real values, 

while discrete places contain non-negative integer 

values. 

A continuous transition 𝑡𝑗 ∈ 𝑇 is enabled, if each of 

the continuous and discrete input places to transition 𝑡𝑗 

have the following condition at the same time: 

|𝑀(𝑝𝑙)| > Pre(𝑝𝑙 , 𝑡𝑗) & 

|𝑀(𝑝𝑖)| > 0 

If 𝑝𝑙 D-Place 
∀𝑝𝑖&𝑙 ∈

° 𝑡𝑗 

If 𝑝𝑖 C-Place 

The firing speed of the continuous 𝑡𝑗 ∈ 𝑇 is:  

𝑣𝑗 =
𝑀(𝑝i)

𝑇𝑠
  If 𝑝𝑖 C-Place (5) 

A discrete transition 𝑡𝑙 is enabled at discrete 𝑀(𝑝𝑖), if  
𝑀(𝑝𝑖) ≥ 𝑃𝑟𝑒(𝑝𝑖 , 𝑡𝑙) 

In the first step, the discrete transitions must be 

evaluated and fired (if enabled) before continuous 

transitions. Therefore, the fundamental equation for the 

discrete part of the HTDPN is: 

[
𝑚𝑐́ (𝑛)

𝑚𝑑́ (𝑛)
] = [

𝑚𝑐(𝑛 − 1)

𝑚𝑑(𝑛 − 1)
] +𝑊 [

0
𝑋(𝑛)

] (6) 

where 𝑋(𝑛) is the firing vector of discrete transitions. 

The fundamental equation for the continuous part can 

be written as follows: 

[
𝑚𝑐(𝑛)

𝑚𝑑(𝑛)
] = [

𝑚𝑐(𝑛 − 1)

𝑚𝑑(𝑛 − 1)
] +𝑊 [

𝑉𝑇𝑠
0
]  (7) 
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Figure 1. A hybrid Petri Nets model 
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where the incidence matrix is written as: 

𝑊 = [

−1 0 0 0
1 −1 0 0
0 0 −1 1
0 0 1 −1

] = [ 𝑊
𝐶 𝑊𝐷𝐶

𝑊𝐶𝐷 𝑊𝐷 ]   (15) 

where 𝑊𝐶  and 𝑊𝐷 correspond to arcs among continuous 

and discrete nodes, respectively. 𝑊𝐷𝐶  corresponds to 

arcs among discrete transitions and continuous places. 

Arcs among continuous transitions and discrete places 

(𝑊𝐶𝐷) are zero and their effects are given in the 𝑉 vector. 

In this paper, the discrete transitions between 

continuous places were not used. 

𝑉(𝑛) =

[
 
 
 
 
 
𝑀(𝑝1(𝑛−1))

𝑇𝑠

𝑀(𝑝2(𝑛−1))

𝑇𝑠

0
0 ]

 
 
 
 
 

   (8) 

For the 𝑋(𝑛) vector, if 𝑀(𝑝𝑖) ≥ 𝑃𝑟𝑒(𝑝𝑖 , 𝑡𝑙), the 

transition can be fired. In this example, 𝑡3 can be fired 

and then 𝑋𝑡3(𝑛) = 1 and for the transition𝑡4, 𝑋𝑡4(𝑛) =

0. The simple hybrid system mentioned above has two 

modes. Therefore, this system can be converted into two 

continuous systems, in the first mode, the place 𝑝3 has a 

token and in the second, 𝑝4 has a token. To examine the 

stability property, it is necessary to construct the matrix 

𝐽𝑐+ . This matrix is defined in definition 3. 

Definition 3: In each mode, the augmented continuous 

incidence matrix 𝐽𝑐+ is extracted from the system 

incidence matrix 𝑊+ as follows: 

𝐽𝑐+ = [𝑊𝐶+ ⋮ 𝑊𝐷𝐶+. 𝑚𝑑 (𝑘)] (9) 

Where 𝑚𝑑 can be obtained as: 

𝑚𝑑(𝑘) = 𝑚𝑑(𝑘 − 1) +𝑊
𝐷. 𝑋 (10) 

And 𝑋 is the firing vector of discrete transitions. 
 
 

3. CONTROLLER DESIGN BASED ON CONTROL 
PLACE IN THE HTDPN TOOL 
 
A detailed description of the controller design algorithm 

based on the HTDPN tool is presented in five steps as 

follows: 

Algorithm 1: 

Step 1. Calculate the open-loop poles of the system in 

each discrete mode using the augmented continuous 

incidence matrix 𝐽𝑐+ based on property 1 [26].   

𝑑𝑒𝑡(𝑧𝐼 − 𝐽𝑐+) = 0 (11) 

If the system in each mode is stable, there is no need to 

design a controller; otherwise, go to step 2. 

Step 2. Add a control place to the HTDPN model of the 

system. 

Step 3. Construct the 𝐽𝑛𝑒𝑤
𝑐+  in each mode. The dimensions 

of 𝐽𝑛𝑒𝑤
𝑐+ are (𝑛 + 2) × (𝑛 + 2). 

Step 4. Obtain the fundamental equation of the system in 

each mode. 

𝑚𝑐(𝑛) = 𝑚𝑐(𝑛 − 1) + 𝐽
𝑐𝑣𝑇𝑠  (12) 

where  

𝑣 =
𝑚(𝑛−1)

𝑇𝑠
  (13) 

So equation Equation (12) can be rearranged to Equation 

(14): 

𝑚𝑐(𝑛) = 𝐽
𝑐+𝑚𝑐(𝑛 − 1) (14) 

Step 5. Calculate 𝑘𝑖 as the system is stabilized. Here, the 

Lyapunov method can be used. 

A Lyapunov function can be exploited for the 

synthesis of nonlinear control systems. First, a Lyapunov 

function 𝑉 must be found for the closed-loop system and 

then a control law is designed, which makes the 

𝛥𝑉negative for the required region of attraction [27]. For 

this purpose, the following Lyapunov’s function 

candidate is defined: 

𝑉(𝑛) = 𝑚𝑐
𝑇𝑃𝑚𝑐 > 0  (15) 

and 

∆𝑉 = 𝑉(𝑛) − 𝑉(𝑛 − 1) < 0  (16) 

where 
∆𝑉 = 𝑚𝑐

𝑇(𝑛 − 1)𝐽𝑐+𝑇𝑃𝐽𝑐+𝑚𝑐(𝑛 − 1) − 𝑚𝑐
𝑇(𝑛 − 1)𝑃𝑚𝑐(𝑛 −

1) < 0 ⟹ ∆𝑉 = 𝑚𝑐
𝑇(𝑛 − 1)(𝐽𝑐+𝑇𝑃𝐽𝑐+ − 𝑃)𝑚𝑐(𝑛 − 1) < 0  

⟹ ∆𝑉 = 𝑚𝑐
𝑇(𝑛 − 1)(−𝑄)𝑚𝑐(𝑛 − 1) 

where 

𝑄 = −(𝐽𝑐+𝑇𝑃𝐽𝑐+ − 𝑃) (17) 

In Lyapunov’s method for stability, 𝑄 must be a positive 

definite constant matrix. 

The flowchart of this algorithm is shown in Figure 2. 
 
 

4. CONTROLLER DESIGN FOR CAPSUBOT ROBOT 
 
4. 1. Capsubot Dynamic Model        The capsubot is 

selected as the system, that is to be controlled by adding 

a control place. The simplified schematic model of the 

legless piezo capsule robot is depicted in Figure 3. 

A mathematical model of the capsubot system is 

derived below [28]. 
 

{
 
 

 
 

�̇�1(𝑡) = 𝑥2(𝑡)

�̇�2(𝑡) = −
𝜇1𝑘

𝑀
(𝑀 +𝑚)𝑔. 𝑠𝑖𝑔𝑛(𝑥2) +

𝜇2𝑘

𝑀
𝑚𝑔. 𝑠𝑖𝑔𝑛(𝑥4 − 𝑥2) +

1

𝑀
𝑢

�̇�3(𝑡) = 𝑥4(𝑡)

�̇�4(𝑡) = −𝜇2𝑘𝑔. 𝑠𝑖𝑔𝑛(𝑥4 − 𝑥2) −
1

𝑚
𝑢

 ⟹ �̇�(𝑡) = 𝐴𝑐𝑋(𝑡) + 𝐵𝑐𝑢(𝑡) + 𝑓𝑐(𝑡)   (18) 
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Figure 2. Flowchart algorithm to design a control place 

based on the HTDPN model 

 

 

 
Figure 3. The schematic of the legless piezo capsule robot 

 

 

where 
𝑋(𝑡) = [𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡) 𝑥4(𝑡)]

𝑇 

and  

𝐴𝑐 = [

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

] , 𝐵𝑐 =

[
 
 
 
 
0
1

𝑀

0

−
1

𝑚]
 
 
 
 

     

𝑓𝑐(𝑡) =

[
 
 
 

0

−
𝜇1𝑘

𝑀
(𝑀 +𝑚)𝑔. 𝑠𝑖𝑔𝑛(𝑥2) +

𝜇2𝑘

𝑀
𝑚𝑔. 𝑠𝑖𝑔𝑛(𝑥4 − 𝑥2)

0
−𝜇2𝑘𝑔. 𝑠𝑖𝑔𝑛(𝑥4 − 𝑥2) ]

 
 
 

  

The parameters of the capsubot robot used are given in 

Table 1. 

A mathematical model of the capsubot microrobot is 

described as follows: 

Finally, the HTDPN with step input for this model is 

demonstrated in Figure 4. 

Here 0+ is the smallest measurable value in a digital 

system. The incidence matrix is depicted in Figure 5. 

The HTDPN tool models multi-mode systems very 

well and provides a clear graphical model for analyzing 

and designing the controller. This system operates in four 

modes.  

The augmented continuous incidence matrix for each 

mode is given in Table 2. 

 
4. 2. Control Design Based on Place          The dynamic 

model of the aforementioned capsule robot is a combined 

nonlinear model that consists of a discrete event part and 

a linear dynamic part. Therefore, the proposed technique 

is very difficult to control. In the following, the control 

method is presented in 5-steps. 

Step 1. The open-loop poles of the system in each mode 

are calculated as: 
 

 

TABLE 1. Parameters of the capsubot 

𝑴𝟏(𝒌𝒈) 𝒎𝟐(𝒌𝒈) 𝝁𝟏𝒌(𝑵/𝑴/𝒔 )  𝝁𝟐𝒌(𝑵/𝑴/𝒔 )  𝒈 (𝒎/𝒔𝟐)  

0.9 0.6 0.083 0.008 9.81 

 

 

 

{
 

 
�̇�1(𝑡) = 𝑥2(𝑡)

�̇�2(𝑡) = −1.3571. 𝑠𝑖𝑔𝑛(𝑥2) + 0.0523. 𝑠𝑖𝑔𝑛(𝑥4 − 𝑥2) + 1.111𝑢

�̇�3(𝑡) = 𝑥4(𝑡)

�̇�4(𝑡) = −0.0785. 𝑠𝑖𝑔𝑛(𝑥4 − 𝑥2) − 1.6667𝑢

  (19) 

After converting the dynamic system from continuous-time system to discrete-time system with the sample time 𝑇𝑠 =
0.01(𝑠), the resulting state space is: 

 

𝑥1(𝑘) = 𝑥1(𝑘 − 1) + 0.01𝑥2(𝑘 − 1) − 1.3571 × 10
−4. 𝑠𝑖𝑔𝑛(𝑥2(𝑘 − 1))

𝑥2(𝑘) = 𝑥2(𝑘 − 1) − 1.3571 × 10
−2. 𝑠𝑖𝑔𝑛(𝑥2(𝑘 − 1)) + 0.0111𝑢(𝑘 − 1)

𝑥3(𝑘) = 𝑥3(𝑘 − 1) + 0.01𝑥4(𝑘 − 1)

𝑥4(𝑘) = 𝑥4(𝑘 − 1) − 0.0785 × 10
−2. 𝑠𝑖𝑔𝑛(𝑥4(𝑘 − 1) − 𝑥2(𝑘 − 1))

−0.0167𝑢(𝑘 − 1)

 (20) 
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Figure 4. The HTDPN model of the capsubot 

 

 

𝑊+ =

[
 
 
 
 
 
 
 
 
 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0.001 0 0 0 0 0 0 0 0 −1.3571 × 10−4 1.3571 × 10−4 0 0

0.0111 0 0 0 0 0 0 0 0 0 0 −1.3571 × 10−2 1.3571 × 10−2 0 0
0 0 0 1 0.001 0 0 0 0 0 0 0 0 0 0

0.0167 0 0 0 1 0 0 0 0 0 0 0 0 0.00785 × 10−2 −0.00785 × 10−2

0 0 1 0 0 0 0 0+ 0− 0 0 0 0 0 0
0 0 −1 0 1 0 0 0 0 0− 0+ 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 ]

 
 
 
 
 
 
 
 
 
 

  

Figure 5. Matrix incidence presentations 
 

 

TABLE 2. The incidence matrix for capsule robot in four modes 

Mode Condition The augmented continuous incidence matrix 

1 
𝑥2(𝑘 − 1) > 0 &  

𝑥4(𝑘 − 1) − 𝑥2(𝑘 − 1) > 0 
𝐽𝑐+ =

[
 
 
 
 
 

0 0 0 0 0 0
0 1 0.01 0 0 −1.3571 × 10−4

0.0111 0 1 0 0 −1.3571 × 10−2

0 0 0 1 0.01 0
−0.0167 0 0 0 1 −0.0785 × 10−2

0 0 0 0 0 1 ]
 
 
 
 
 

  

2 
𝑥2(𝑘 − 1) > 0 & 

 𝑥4(𝑘 − 1) − 𝑥2(𝑘 − 1) < 0 
𝐽𝑐+ =

[
 
 
 
 
 

0 0 0 0 0 0
0 1 0.01 0 0 −1.3571 × 10−4

0.0111 0 1 0 0 −1.3571 × 10−2

0 0 0 1 0.01 0
−0.0167 0 0 0 1 0.0785 × 10−2

0 0 0 0 0 1 ]
 
 
 
 
 

  

3 
𝑥2(𝑘 − 1) < 0 &  

𝑥4(𝑘 − 1) − 𝑥2(𝑘 − 1) > 0 
𝐽𝑐+ =

[
 
 
 
 
 

0 0 0 0 0 0
0 1 0.01 0 0 1.3571 × 10−4

0.0111 0 1 0 0 1.3571 × 10−2

0 0 0 1 0.01 0
−0.0167 0 0 0 1 −0.0785 × 10−2

0 0 0 0 0 1 ]
 
 
 
 
 

 

4 
𝑥2(𝑘 − 1) < 0 &  

𝑥4(𝑘 − 1) − 𝑥2(𝑘 − 1) < 0 
𝐽𝑐+ =

[
 
 
 
 
 

0 0 0 0 0 0
0 1 0.01 0 0 1.3571 × 10−4

0.0111 0 1 0 0 1.3571 × 10−2

0 0 0 1 0.01 0
−0.0167 0 0 0 1 0.0785 × 10−2

0 0 0 0 0 1 ]
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{
 
 

 
 

𝑧1 = 1
𝑧2 = 1
𝑧3 = 1
𝑧4 = 1

𝑧5 = −0.0001 + 0.0105𝑖
𝑧6 = −0.0001 − 0.0105𝑖

  

The system is unstable, so it requires a controller. 

Step 2. Add a control place to the HTDPN model of 

the system. The HTDPN model of the system is shown in 

Figure 4. 

The HTDPN model of Equation (19) with the 

controller is depicted in Figure 6.  

In Figure 6, transitions 𝑡16, 𝑡17, 𝑡18 and 𝑡19 act as a switch, 

and by placing the robot in any mode, these transitions 

determine which control coefficient to use. 

Step 3. The augmented continuous incidence matrix 

𝐽𝑛𝑒𝑤
𝑐+ is structured in Table 3. 

 

 
1
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Figure 6. The HTDPN model of the system with Equation (27) 

 

 
TABLE 3. The incidence matrix for capsule robot with control place in four modes 

Mode Condition The augmented continuous incidence matrix 

1 
𝑥2(𝑘 − 1) > 0 & 

𝑥4(𝑘 − 1) − 𝑥2(𝑘 − 1) > 0 
𝐽𝑛𝑒𝑤
𝑐+ =

[
 
 
 
 
 
 
0 0 0 0 0 0 0
0 1 0.01 0 0 −1.3571 × 10−4 0
0 0 1 0 0 −1.3571 × 10−2 0.0111𝐾1
0 0 0 1 0.01 0 0
0 0 0 0 1 −0.0785 × 10−2 0
0 0 0 0 0 1 −0.0167𝐾1
1 0 0 0 1 0 0 ]

 
 
 
 
 
 

 

2 
𝑥2(𝑘 − 1) > 0 & 

𝑥4(𝑘 − 1) − 𝑥2(𝑘 − 1) < 0 
𝐽𝑛𝑒𝑤
𝑐+ =

[
 
 
 
 
 
 
0 0 0 0 0 0 0
0 1 0.01 0 0 −1.3571 × 10−4 0
0 0 1 0 0 −1.3571 × 10−2 0.0111𝐾2
0 0 0 1 0.01 0 0
0 0 0 0 1 0.0785 × 10−2 0
0 0 0 0 0 1 −0.0167𝐾2
1 0 0 0 1 0 0 ]

 
 
 
 
 
 

 

3 
𝑥2(𝑘 − 1) < 0 & 

𝑥4(𝑘 − 1) − 𝑥2(𝑘 − 1) > 0 
𝐽𝑛𝑒𝑤
𝑐+ =

[
 
 
 
 
 
 
0 0 0 0 0 0 0
0 1 0.01 0 0 1.3571 × 10−4 0
0 0 1 0 0 1.3571 × 10−2 0.0111𝐾3
0 0 0 1 0.01 0 0
0 0 0 0 1 −0.0785 × 10−2 0
0 0 0 0 0 1 −0.0167𝐾3
1 0 0 0 1 0 0 ]
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4 
𝑥2(𝑘 − 1) < 0 & 

𝑥4(𝑘 − 1) − 𝑥2(𝑘 − 1) < 0 
𝐽𝑛𝑒𝑤
𝑐+ =

[
 
 
 
 
 
 
0 0 0 0 0 0 0
0 1 0.01 0 0 1.3571 × 10−4 0
0 0 1 0 0 1.3571 × 10−2 0.0111𝐾4
0 0 0 1 0.01 0 0
0 0 0 0 1 0.0785 × 10−2 0
0 0 0 0 0 1 −0.0167𝐾4
1 0 0 0 1 0 0 ]

 
 
 
 
 
 

 

 

 

Step 4. Obtain the fundamental equation of the system. 
𝑚𝑐(𝑛) = 𝑚𝑐(𝑛 − 1) + 𝐽

𝑐𝑣 

Step 5. Calculate𝐾𝑖 as the system is stabilized with the 

Lyapunov method. 
𝑉 = 𝑚𝑐

𝑇(𝑛)𝑃𝑚𝑐(𝑛) > 0 

∆𝑉 = 𝑚𝑐
𝑇(𝑛 − 1)(𝐽𝑐+𝑇𝑃𝐽𝑐+ − 𝑃)𝑚𝑐(𝑛 − 1) < 0 ⟹ ∆𝑉

= 𝑚𝑐
𝑇(𝑛 − 1)(−𝑄)𝑚𝑐(𝑛 − 1) 

Here, the genetic algorithm method is used to calculate 

the control coefficients. The genetic algorithm must 

satisfy Equation (3) and also minimize the following 

fitness function: 

𝐹𝑜𝑏𝑗 = (𝑥4(𝑡) − 𝑥4𝑑(𝑡))
2
  (21) 

The parameters of the genetic algorithm for the system 

are shown in Table 4. 

The convergence trends in the GA for the controller 

are shown in Figure 7. 

Consequently, the 𝐾𝑖 for each of the modes are given 

in Table 5. 

 

 

5. SIMULATION RESULTS 
 

In this section, the performance of the controller design 

algorithm will be presented using a control place based 

on the HTDPN model. In this paper, to investigate the 

performance of the introduced method, this method is 

 

 
TABLE 4. The Parameters of the GA. 

Generations Elite Count Crossover Fraction 

50 3 0.7 

 

 

 
Figure 7. The GA convergence trend in the controller 

TABLE 5. Control coefficients of the capsule using Lyapunov 

theorem. 

Mode Condition Gain 

1 
𝑥2(𝑘 − 1) > 0 & 𝑥4(𝑘 − 1) − 𝑥2(𝑘 −

1) > 0  
𝐾1 = −8.78 

2 
𝑥2(𝑘 − 1) > 0 & 𝑥4(𝑘 − 1) − 𝑥2(𝑘 −

1) < 0  
𝐾2 = −17.436 

3 
𝑥2(𝑘 − 1) < 0 & 𝑥4(𝑘 − 1) − 𝑥2(𝑘 −

1) > 0  
𝐾3 = −16.121 

4 
𝑥2(𝑘 − 1) < 0 & 𝑥4(𝑘 − 1) − 𝑥2(𝑘 −

1) < 0  
𝐾4 = −16.508 

 

 

compared with the MPC. Figure 8 shows the capsubot 

step response in the proposed approach and MPC. 

A comparison of the results in Figure 8 shows that the 

HTDPN response is stable and the proposed control 

method converges faster than MPC. 

Figure 9 and Figure 10 depict capsubot velocity and 

inner mass velocity, respectively. 

These figures show that the inner mass velocity and 

robot velocity of the proposed method has less oscillation 

and is smoother than the predictive control method; 

therefore, the result can be easily implemented. 

The input signal in the proposed approach and MPC 

method is shown in Figure 10. 

Figure 11 shows that the input signal in the proposed 

approach is smoother than the predictive control method. 

This is while the input signal peak is higher in the 

presented method. Energy consumption can  also be 

calculated as follows: 

𝑊 = ∑ 𝑈(𝑖). ∆𝜃(𝑖)𝑛
𝑖=1    (22) 

 

 

 
Figure 8. The output of the proposed approach and MPC 
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Figure 9. The capsubot velocity 

 

 

 
Figure 10. The inner mass velocity 

 

 

 
Figure 11. The input signal of the proposed approach and 

MPC method 

 

The integral absolute error (IAE) is commonly used 

in the design and evaluation of practical control systems' 

performance. The IAE is calculated as follows: 

𝐼𝐴𝐸 = ∑ |𝑒(𝑖)|𝑛
𝑖=1   (23) 

Table 6 shows a comparison of different criteria for 

the four simulated methods. 

Here, for a more accurate comparison of these 

methods in Table 5, these parameters are normalized as 

below:  

𝑆 =
𝐷𝑒𝑠𝑖𝑔𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑣𝑎𝑙𝑢𝑒

𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 
  (24) 

The total of numbers is a criterion for comparing 

these methods. Table 7 illustrates these normalized 

criteria. 

As Table 7 clearly shows, according to the design criteria, 

the control place scheme for dynamic systems has proper 

performance in comparison to the MPC. This controller 

is designed according to the capacity of the HTDPN tool. 

Therefore, the designer can perform the desired 

controller in the graphical environment of the HTDPN 

tool. Finally, the design result is applied in the incidence 

matrix for use in the simulation. In addition, the 

simulation of the system mentioned above by our novel 

algorithm and the conventional one via the same 

hardware configuration relays a significant advantage of 

the new method, which is time efficiency. For future 

works, it is suggested that other control design algorithms 

such as fuzzy and optimization methods be implemented  
 

 

TABLE 6. Comparison of the controller design criteria for the 

different methods. 

Method 
Proposed 

method 
MPC 

Optimal 

Control 
CLC 

Energy 

Consumption (𝐽) 
0.1617 0.352 0.1372 0.3932 

IAE (𝑚) 5.572 19.075 581.8096 56.087 

Rise Time (𝑆) 0.2119 2.406 6.8857 6.8 

Settling Time (𝑆) 0.4651 4.319 8.4218 8.24 

Force Peak (𝑁) 25 4 1.518 4.4158 

Run Time (𝑆) 0.7336 0.951 0.9689 0.8974 

 
 

TABLE 7. Comparing the normalized parameters for the different methods 

                                              Method 

Normalized Values 
Proposed method MPC Optimal Control CLC 

Energy Consumption 1.1794 2.5675 1 2.865 

IAE 1 3.4234 104.4167 10.0658 

Rise Time 1 20.366 32.4675 32.091 

Settling Time 1 9.2851 18.1159 17.7166 

Force Peak 16.4745 2.635 1 2.91 

Run Time  1 1.2963 1.3208 1.223 

Sum of NV 21.6539 39.5733 158.3209 66.871 



 

 

 

with the HTDPN tool and the results be compared with 

the proposed method. 

 

 

6. CONCLUSION 
 

In this paper, a novel method for controller design was 

presented in the environment of the HTDPN tool. In this 

approach, the desired controller was designed by adding 

control places in the graphical environment of the 

HTDPN model system. Using the properties of the 

HTDPN tool, the controller designed in the graphical 

environment was transferred to the mathematical 

environment. Here, the control place technique used in 

the design of supervisory control in conventional Petri 

Nets was extended to a HTDPN. Then, by applying 

Lyapunov's theory to the incidence matrix, the 

coefficients of the controller were extracted. This 

controller guarantees that the system was stable. In 

addition, the control place inputs were determined by the 

GA method. To prove the performance of the controller, 

this method was implemented in the capsubot model. It 

was obvious that this method simplified system analysis 

and controller design. In addition, due to the use of 

environment matrices for changes of system states and 

algebraic operations instead of solving equations, the 

proposed approach provides a faster mathematical 

algorithm that can reduce simulation time and 

complexity for complex systems. Additionally, the 

results clearly showed that this approach could improve 

the performance of the controller design. 

For future work, it is suggested that the analysis of 

some system properties, such as controllability and 

visibility, which are extracted using the state space, 

should also be investigated and analyzed in modeling 

using the HTDPN tool. 
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8. APPENDIX 
 

The proof of the property 1 is as follows: 

Proof: Due to the difference equations, the coefficient of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the first side of the equation is equal to 1, therefore, in the 

CTDPN model, this relation always holds; 𝑃𝑟𝑒(𝑝𝑖 , 𝑡𝑗) =

1, therefore:  

𝑞(𝑡𝑗 ,𝑚) = min
𝑖:𝑝𝑖∈

°𝑡𝑗
(

𝑀(𝑝𝑖)

𝑃𝑟𝑒(𝑝𝑖,𝑡𝑗)
) = min

𝑖:𝑝𝑖∈
°𝑡𝑗
(𝑀(𝑝𝑖))  (25) 

Since in the CTDPN, the maximum speed of a transition 

is assumed infinity; therefore, we can suppose that all of 

the tokens in the places before a transition tj  are 

discharged at time 𝑇𝑠 and then the transitions speed is a 

function of enabling degree for this transition. Therefore:  

∫ 𝑣𝑗(𝑡)𝑑𝑡
𝑡1+𝑇𝑠
𝑡1

= min
𝑖:𝑝𝑖∈

°𝑡𝑗
(𝑀(𝑝𝑖))  

∫ 𝑣𝑗(𝑡)𝑑𝑡
𝑡1+𝑇𝑠
𝑡1

= 𝑣𝑗(𝑡1)(𝑡1 + 𝑇𝑠 − 𝑡1) =

𝑣𝑗(𝑡1)(𝑇𝑠) ⇒ 𝑣𝑗(𝑡1) =
𝑀(𝑝𝑖)

𝑇𝑠
  

(26) 

The proof of the property 2 is as follows: 

Proof: The fundamental equation for timed Continuous 

Petri Nets between times 𝑡1 and 𝑡2  is as follows: 

𝑚(𝑡2) = 𝑚(𝑡1) + ∫ 𝑊𝑣(𝑡)𝑑𝑡
𝑡2
𝑡1

  (27) 

If 𝑡2 = 𝑛𝑇𝑠 and 𝑡1 = 𝑡2 − 𝑑𝑡 = (𝑛 − 1)𝑇𝑠 the following 

can be written: 

𝑚(𝑛𝑇𝑠) = 𝑚((𝑛 − 1)𝑇𝑠) +𝑊 ∫ 𝑣(𝑡)𝑑𝑡
𝑛𝑇𝑠
(𝑛−1)𝑇𝑠

  (28) 

Here, 𝑇𝑠 is sample time. 

By property 1, the following holds true [26]: 

∫ 𝑣(𝑡)𝑑𝑡
𝑛𝑇𝑠
(𝑛−1)𝑇𝑠

= 𝑚((𝑛 − 1)𝑇𝑠)  (29) 

Substituting Equation (29) into Equation (28) and 

rewriting it gives: 

𝑚(𝑛𝑇𝑠) = 𝑚((𝑛 − 1)𝑇𝑠) +𝑊𝑚((𝑛 − 1)𝑇𝑠)  (30) 

Therefore, the fundamental equation of HTDPN can be 

obtained as: 

𝑚(𝑛) = 𝑚(𝑛 − 1) +𝑊𝑚(𝑛 − 1)  (31) 
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Persian Abstract 

 چکیده 
کننده با استفاده از کنترل مکان در سیستم مدل شده با ابزار شبکه پتری زمان تأخیری ترکیبی است. اغلب در  هدف از این مقاله معرفی یک روش جدید برای طراحی کنترل 

که، رویکرد جدید معرفی شده در این مقاله از کنترل  شود. در حالیهای مدل شده با شبکه پتری گسسته، از کنترل مکان برای طراحی کنترل نظارتی سیستم استفاده می سیستم

های متصل ها، کمانهای کنترلی، گذرگاهکننده شامل، مکان کند. این کنترلهای دینامیکی مدل شده با ابزار شبکه پتری زمان تأخیری ترکیبی استفاده می مکان برای کنترل سیستم

کننده سه گام باید انجام گیرد. در گام اول سیستم با  کند. در این مقاله، برای طراحی کنترل ه شده و سیستم را کنترل میهای کنترلی است که به مدل سیستم اضافشده به مکان

متصل به    یهاوزن کمان  ت،یدر نها  .شودی م  یطراح  کنندهکنترل   کیارائه شده    دیدر مرحله دوم با استفاده از روش جدشود، و  ابزار شبکه پتری زمان تأخیری ترکیبی مدل می

  ی کنترلی هاروش امکان استفاده همزمان از مکان  نی ا  یاصل  تیمز  کند.ی م  ن یحلقه بسته را تضم  پایداریشود که  ی محاسبه م  اپانوفیتابع ل  ی با استفاده از تئور  های کنترلیمکان

  ط ی را در مح  مطلوب کننده  کنترل  کی  تواندی طراح خبره م  کی  ،یشنهادیدر روش پ  ،یقبل   یکردهایبرخلاف اکثر رو  .های غیرخطی استبرای کنترل سیستم و گسسته    وستهیپ

کننده پیشنهادی، این روش با استفاده از معیارهای خطا، شبکه پتری مشاهده نماید. برای بررسی کارایی کنترل مدل    ی اضیر  طیرا در مح  ی راتییکند و سپس تغ   جاد یا  یکیگراف

 طیدرصد شرا  600و    45  ب یبه ترت  یشنهادیدهد که روش پی نشان م  یسازه یشب  جینتااست.  سازی با مقایسه ارزیابی شده مصرف انرژی، زمان صعود، زمان نشست و زمان شبیه 

 دارد. نهیو کنترل به بینکنترل پیشنسبت به روش  یبهتر
 

 
 


