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A B S T R A C T  
 

 

Texture image segmentation plays an important role in various computer vision tasks. Active contour 

models are one of the most efficient and popular methods for identifying the purpose and segmentation 
of objects in the image. This paper presents a parametric active contour model (PACM) with a robust 

minimization framework based on image texture energy. First, the texture features of the original image 

are extracted using gray level co-occurrence matrix (GLCM). Subsequently, based on the GLCM texture 
features inside and outside the active contour, Jensen-Tsallis divergence of energies is calculated. The 

Jensen-Tsallis divergence is added to the parametric active contour using the balloon equation. The 

divergence is maximum at the boundary between the foreground and background of the image, which 
results in minimizing the active contour equation at the boundary of the target object. This global 

minimization energy function with texture feature can avoid the existence of local minima in the PACM 

models. Also, as opposed to previous models, the proposed model only requires the initial contour and 
is not dependent on the distance of the initial contour from the target object. In terms of segmentation 

accuracy and efficiency, experiments with synthetic and natural images demonstrate that the proposed 

approach obtains more satisfactory results than the previous state-of-the-art methods. 

doi: 10.5829/ije.2022.35.07a.05 
 

 
1. INTRODUCTION1 

 

Segmentation is one of the prime parts of image 

processing. Boundary detection plays an important role 

in machine vision applications, such as control of urban 

transportation systems [1], video surveillance [2], 

medical diagnosis [3-6], identifying military targets [7], 

plants monitoring [8-10] and object tracking [11-15]. 

One of the important areas in image segmentation is the 

division of an image into areas with different textural 

features [16]. This has been the focus of researchers for a 

long time. So far, no identified method has been proposed 

for segmenting images with non-uniform textures that 

can segment all textures. In general, the quality of 

textural image segmentation depends on the performance 

of texture description algorithms as well as the choice of 

segmentation method [17]. Many methods for 

segmenting images have been introduced, including 

region growth, division, integration, neural networks 

(ANN), active contour (ACM) models, etc [18]. Active 

contour models are recognized as one of the most 
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successful methods for segmenting images [19, 20]. 

Active contour models have many advantages over other 

algorithms [21, 22]. First, active contour models show 

the coordinates of boundary pixels well. Second, it is 

possible to add image region information to the active 

contour to improve the quality of texture segmentation. 

Third, the resulting contour is a closed and regular 

contour that is very suitable for applications such as 

segmentation, detection, and analysis of an image [23]. 

Based on basic equations for active contours, the 

models of active contours can be divided into geometric 

[24] and parametric [25] categories. The basic equations 

of active contour models consist of two parts: internal 

energy, and external energy. Internal energy is not 

dependent on image and is simply a mathematical 

definition of a discrete contour [26]. External energy is 

an equation that is derived from the content of the image 

and helps to converge the active contour to the object 

boundary [25]. Researchers have so far been able to 

define external energy equations in edge-based 

(traditional) and region-based methods [18]. Edge-based 
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active contours use an edge detection algorithm to stop 

the active contour from moving at the target object 

boundary [16]. Therefore, edge-based methods will be 

incapable of dealing with images with weak borders. To 

overcome this problem, researchers have tried to use 

region information to improve the performance of the 

active contour [27-29]. Region-based active contours are 

stronger when facing low-contrast images (weak edges) 

and are also less sensitive to the position of the starting 

points of the active contour [23]. 

Therefore, to overcome this problem in low-edge 

images, Ivins and Porrill [30] and Schaub and Smith [31] 

introduced different models of color active contour. In 

turn, Hamarneh et al. [32] introduced a type of color 

active contour in which inflatable energy is used to guide 

the contour towards the target. This energy uses 

normalized RGB color space or HSV color space to 

produce color pressure energy. This model used an active 

contour in medical images to segment oral lesions. In this 

method, the energy of color pressure is added to the 

energy function of the parametric active contour model. 

The energy is directed to the target object with a specific 

color using the new energy function of the active contour. 

The technique was used in medical image segmentation 

and mobile image lighting. This method makes it 

possible to segment targets that have weak borders. In 

this method, the target and the background should have 

the same color. However, the color pressure energy 

cannot segment targets with complex colors or textures.  

Recent studies have examined external energies 

based on texture properties since color-based external 

energies have difficulty dealing with complex textured 

images. Researchers have shown that by adding new 

balloon energy based on texture properties to parametric 

active contour models, it is possible to segment texture 

objects in the textured background [27]. 

Vard et al. [33] presented an active contour based on 

texture properties, which used region information to 

enhance its ability to capture object boundaries in the 

image using the texture energy moment equations. Vard 

et al. [27] also used Walsh Hadamard's transform in 

another study to obtain region information and obtained 

better results. 

Moallem et al. [28] used the Gabor filter to add image 

texture information to the active contour. Based on their 

results, the active contour method which uses a Gabor 

filter has a better response than the active contour method 

using a moment. 

The above methods are effective for segmenting 

synthetic images, but they are not accurate enough in 

order to segment natural images. To overcome this 

problem, Wu et al. [23] proposed a combination of the 

Gabor filter and the GLCM algorithm. This combination 

was used to obtain region information and to construct a 

new model for a geometric active contour. Due to the 

GLCM algorithm and geometric active contour, this 

method is very slow. By combining local variation 

degree (LVD) of intensity and Gabor features, Gao et al. 

[34] added new texture energy to the active contour. Due 

to the use of a level set contour, this method is very slow, 

too. Subudhi and Mukhopadhyay [35] presented a 

statistical region-based Active Contour Model (ACM) 

that considered the correlation between local and global 

image statistics to segment cluttered images. Wu et al. 

[36] proposed Deep Parametric Active Contours 

(DPAC). Using such high-dimensional features may 

improve segmentation accuracy, however, calculations 

of these high-level features burden high computational 

cost. Subudhi and Mukhopadhyay [16] introduced a new 

energy using discrete cosine transforms, directing the 

active contour towards the object boundary. Also 

Badoual [37] introduced the contour which was directed 

to the boundary of the target object by including a circle 

wavelet in the active model. 

Due to the high calculation requirements of geometric 

models [16], the focus of this paper is on active contour 

models for object segmentation in the textural 

environment. With the help of the Jensen-Tsallis 

divergence, new texture properties are added to the 

parametric active contour model. Jensen-Tsallis 

divergence  (JTD) calculates the distance between two 

probability density functions, and it is maximal at the 

boundary between the two probability density functions. 

If an image consists of two different textures, then the 

image histogram has two probability density functions, 

an object probability density function, and a background 

probability density function. Since the Jensen-Tsallis 

divergence at the boundary between the two density 

functions is at a maximum level, if we add it to the active 

contour, the contour energy equation at the boundary 

between the target object and the background is 

minimized. 

The structure of this paper is as follows. The 

mathematical background which contains three parts of 

ACM, GLCM, and JTD is presented in section 2. In 

section 3, the proposed method of the active contour 

model based on JTD is described. The experimental 

results and validation of the proposed method are 

discussed in section 4, and the conclusion follows in 

section 5. 

 

 

2. BACKGROUND 
 

2. 1. Mathematical Description of the Parametric 
Active Contour Model            In the parametric active 

contour model, the contour or surface is specified in 

parametric form during the deformation process. 

Parametric active contours are open or closed contours 

[25], as described in Equation (1): 

𝑆(𝑢) = 𝐼(𝑥(𝑢), 𝑦(𝑢)      ,     𝑢 ∈ [0 , 1]     (1) 

http://scholar.google.com/scholar?q=Jensen-Tsallis+divergence&hl=fa&as_sdt=0&as_vis=1&oi=scholart
http://scholar.google.com/scholar?q=Jensen-Tsallis+divergence&hl=fa&as_sdt=0&as_vis=1&oi=scholart
http://scholar.google.com/scholar?q=Jensen-Tsallis+divergence&hl=fa&as_sdt=0&as_vis=1&oi=scholart
http://scholar.google.com/scholar?q=Jensen-Tsallis+divergence&hl=fa&as_sdt=0&as_vis=1&oi=scholart
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The points of the contour move in coordinate space (x, y) 

until they match the desired properties of the object. It is 

necessary to take the vector discrete function S(u) in the 

set of points [22] where i = 0,1,..., M, where M is the 

number of points on the contour. In the following, the 

interpolation of discrete points results in a continuous 

contour in the final stage. Based on the sum of the two 

internal energies 𝐸𝑖𝑛𝑡(𝑆(𝑢)) and the external energy 

𝐸𝑒𝑥𝑡(𝑆(𝑢)), the contour energy 𝐸(𝑆(𝑢)) is calculated as 

follows: 

𝐸(𝑆(𝑢)) = 𝐸𝑖𝑛𝑡(𝑆(𝑢)) + 𝐸𝑒𝑥𝑡(𝑆(𝑢))  (2) 

An effective boundary for segmentation is when the 

energy from the above equation is the lowest. Thus, 

finding the boundary of the object will correspond to 

minimizing the contour energy function. The amount of 

elasticity and bending of the contour is determined by the 

internal energy, which is calculated as follows: 

𝐸𝑖𝑛𝑡 =
𝛼

2
|

𝜕

𝜕𝑢
𝑆(𝑢)|

2
+ 

𝛽

2
|

𝜕2

𝜕𝑢2 𝑆(𝑢)|
2

  (3) 

Internal energy prevents the points of contour from 

oscillating and keeps them at a constant distance from 

one another. The first and second parts of the internal 

energy respectively prevent excessive elasticity and 

bending of the contour and keep it cohesive and smooth. 

In this case, the obtained flexible model will act as a 

string with both elasticity and strength properties. By 

adjusting the weighting parameters α and β, it is possible 

to adjust the two properties of elasticity and bending 

concerning each other. 

External energy is defined in the scope of the image. 

It is responsible for absorbing contours into the desired 

features in an image, such as lines, corners, and other 

image properties. Therefore, external energy is also 

known as image energy (𝐸𝑖𝑚𝑔(𝑆(𝑢))). As a result, the 

parametric active contour energy is defined according to 

Equation (4): 

𝐸 =
𝛼

2
∮ |

𝜕

𝜕𝑢
𝑆(𝑢)|

2
𝑑𝑢 + 

𝛽
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∮ |

𝜕2

𝜕𝑢2 𝑆(𝑢)|
2

𝑑𝑢 +

∮𝐸𝑖𝑚𝑔(𝑆(𝑢)) 𝑑𝑢  
(4) 

In the traditional model of a parametric active contour, 

the active contour is deformed enough to capture the 

actual boundaries of the object to an acceptable extent. 

For this reason, in the initial active contour models, the 

image energy was proposed in proportion to the edge 

characteristic [12, 20]. It was described according to 

Equation (5) [25] and Equation (6) [38]: 

𝐸𝑖𝑚𝑔 = 𝐸𝑒𝑑𝑔𝑒 = −|𝛻𝐼(𝑠)|2 (5) 

𝐸𝑖𝑚𝑔 = 𝐸𝑒𝑑𝑔𝑒 = −𝛾|𝛻(𝐺𝜎(𝑠) × 𝐼(𝑠))|
2
 (6) 

Equation (6) is used to reduce noise in which 𝛾 is a 

parameter that controls the amount of image energy. 𝛻 is 

Gradient operator and 𝐺𝜎(𝑠) × 𝐼(𝑠) shows image 

convolution with a Gaussian filter including standard 

deviation σ.  

 

2. 2. Gray-Level Co-Occurrence Matrix           The 

gray-level co-occurrence matrix is used to extract 

second-order statistics from an image. The co-occurrence 

matrix represents the number of times two pixels occur 

in an image in the direction of a given vector, called the 

displacement vector. By changing the direction of the 

vector, we can obtain different characteristics for the 

texture. The co-occurrence matrix for an image I (x, y) is 

defined as Equation (7) [23]: 

𝑃(𝑥, 𝑦) = 𝑃 𝑟(𝑥, 𝑦|𝑑, 𝜃, 𝐺,𝑊)  (7) 

In the above equation, d is the distance; θ is the direction 

of movement; G is the quantization level; and W is the 

window size. Once the co-occurrence matrix is formed, 

various properties can be calculated. In this paper, a new 

feature is calculated by the Jensen-Tsallis divergence, 

which is described in the next section. 

 

2. 3. Jensen -Tsallis Divergence           Information 

theory is one of the new scientific branches in applied 

mathematics and electrical engineering in which 

information is quantified and studied from a 

mathematical point of view. Information theory is based 

on the science of statistics and probability, in which 

entropy is a fundamental quantity. According to this 

theory, the concept of entropy is introduced as a branch 

of image processing that estimates the amount of 

information in an image. Entropy can provide a sufficient 

level of image information. Since probabilities are 

represented by entropy, this is a meaningful measure for 

texture. 

The desired entropy can be calculated from the 

distribution of the gray level of the image. Since the new 

external energy is defined based on it,  entropy helps the 

active contour to be better absorbed towards the object 

boundary. In this case, if each gray level r occurs with a 

probability of p, then the occurring probability of a pixel 

can  be defined as follows: 

𝑝𝑘 =
𝑛𝑘

𝑁×𝑀
     𝑘 = 0,… , 𝐿 − 1    (8) 

𝑛𝑘 indicates the number of pixels on the gray surface k, 

and L represents the number of gray levels. M, N also 

represents the number of rows and columns in the image, 

respectively [39]. 

 
2. 4. Relative Entropy (Divergence)           Shannon 

defined entropy for discrete random variables for the first 

time in 1948 [40]. This entropy is known as Shannon 

entropy that is described as follows: 

𝑆(𝑃) = ∑ 𝑃𝑘 𝑙𝑜𝑔(𝑃𝑘
−1)𝐿−1

𝑘=0      𝑘 = 0,1,2,… 𝐿 − 1    (9) 

Visually, entropy measures the amount of formation 

or uncertainty in a random variable related to a natural 
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process. Divergence, also known as relative entropy, is 

the distance between two probability distribution 

functions. Divergences have been proposed as a measure 

of similarity between two probability distribution 

functions. In information theory, the most important 

divergence is the Kullback-Leibler (KLD) Divergence 

between P and Q [41], which is defined as follows: 

𝐾𝐿𝐷(𝑃 ∥ 𝑄) = ∑ 𝑙𝑜𝑔
𝑝𝑖

𝑞𝑖

𝐿−1
𝑘=0    (10) 

In classical information theory, this function, known 

as reciprocal entropy or directional divergence, measures 

uncertainty in relative rather than absolute terms [42]. 

The relative entropy is always non-negative and is zero 

only if P = Q. However, this is not a real distance between 

distributions since it is not symmetric and does not satisfy 

the triangle inequality [43]. When the Kullback-Leibler 

divergence is zero, we can expect similar (not exactly the 

same) behavior from two distributions, while a value of 

1 indicates that the two distributions have opposite 

behaviors. A Jensen-Shannon Divergence (JSD) is a 

finite, symmetric, and smooth version of the Kullback-

Leibler Divergence [44], that is defined as follows: 

𝐽𝑆𝐷(𝑃 ∥ 𝑄) =
1

2
𝐾𝐿𝐷(𝑃 ∥ 𝑄) +

1

2
𝐾𝐿𝐷(𝑄 ∥ 𝑀)  (11) 

where M = (P + Q) / 2 in probability information theory 

and statistics, JSD is a popular method for determining 

the similarity of two probability distributions. Jensen-

Shannon divergence has the following properties: (A) it 

has mathematical properties and KLD divergence 

interpretations, and it offers simple interpretations within 

the framework of statistical physics and information 

theory; (B) it is symmetrical and works in a metric space; 

(C) it can be generalized to more than two distributions 

[45]. 

Various generalizations of Shannon entropy have 

been proposed in recent years. The generalization of the 

Shannon entropy standard is called the Tsallis Entropy as 

defined below [46]: 

𝑇𝜅(𝑃) =
1−∑ 𝑝𝑘

𝜅𝐿−1
𝑘=0

𝜅−1
         𝜅 > 0, 𝜅 ≠ 1    (12) 

The new form of divergence can be introduced by 

substituting Tsallis entropy with Shannon entropy in 

Equation (13). It is known as Jensen-Tsallis divergence 

and is defined as follows [45]: 

𝐽𝑇𝐷𝜅(𝑃, 𝑄) = 𝑇𝜅 (
𝑃+𝑄

2
) −

1

2
[𝑇𝜅(𝑃) + 𝑇𝜅(𝑄)]  (13) 

In a picture with a background and a target object, an 

image histogram diagram shows the image content using 

two bell-shaped curves (probability density functions), 

one for the background and the other for the target object. 

We can separate the pixels related to background and 

target objects if we can calculate the boundary between 

these two probability density functions. Different 

methods have been proposed to obtain the distance 

between two probability density functions, such as 

Kolbeck-Liber, Cauchy-Schwarz, Jensen-Shannon, and 

Jensen-Tsallis Divergences [47]. This paper shows that 

the maximum Jensen-Tsallis divergence occurs at the 

boundary of two density functions, and thus can be 

recognized as a threshold between target and background 

objects. Jensen-Tsallis divergence is used by the 

proposed method to calculate new energy that, when 

added to Equation (2), will minimize the energy of the 

active contour exactly at the object boundary. This is 

described in the following section. 

 

 

3. THE PROPOSED MODEL OF ACTIVE CONTOUR 
BASED ON JENSEN-TSALLIS DIVERGENCE 
BALLOON ENERGY  

 

In this paper, a new active contour model based on 

Jensen-Tsallis divergence is proposed. As described 

previously, Jensen-Tsallis divergence can be used to 

determine the boundary between two textures in an 

image. Since the Jensen-Tsallis divergence is described 

based on the brightness level of an image, it does not 

work well in images with inhomogeneous textures. First, 

the image is described using the co-occurrence matrix 

algorithm, and then using the Jensen-Tsallis divergence, 

a new property is extracted from the co-occurrence 

matrix, which can mention the distinction between two 

textures in the image. This property is utilized to generate 

new balloon energy that greatly increases the 

convergence power of the active parametric contour 

toward the object boundary. 

 

3. 1. Balloon Energy Based on Texture        As 

described in section 1, the active contour model is 

expressed as Equation (2). The balloon energy based on 

the texture feature is added to the external energy of the 

contour equation to increase the strength of the active 

contour. Therefore, the new external energy is defined by 

Equation (14): 

𝐸𝑒𝑥𝑡 = 𝐸𝑖𝑚𝑔 + λ ∙ 𝐸𝑏𝑎𝑙  (14) 

the balloon energy factor λ helps the active contour cross 

local minima. In the proposed method, 𝐸𝑏𝑎𝑙  is Equation 

(15): 

𝐸𝑏𝑎𝑙 = − 𝑇𝐽𝑇𝐷(𝐼(𝑠)) ×�⃗� (𝑠) (15) 

�⃗� (𝑠) is the unit normal vector of the contour point. 

 
3. 2. Algorithm for Segmentation Based on the 
Proposed Method         The flowchart in Figure 1 

illustrates how to segment a textured object in a textured 

background. The first step is to create the initial contour 

around the target object in the image. As Equation (4) 

moves this contour towards the boundary of the target 

object, an update to Equation (4) is required for a better  
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Get the image

Establish the initial contour 

points.

Co-occurrence matrix 

calculation.

Calculation of balloon energy using 

Jensen-Tsallis divergence.

Calculation of contour energy total.

Update the new position of 

the contour points

Is it at the 

border?
Output image

YESNO

 
Figure 1. The flowchart for the proposed algorithm 

 

 

active contour function. To achieve this, balloon energy 

is added to the active contour energy of Equation (4), 

which improves the active contour's function. The 

balloon energy is derived from the Jensen-Tsallis 

divergence. Jensen-Tsallis divergence is calculated by 

using the texture feature of the image. An image's texture 

feature can be computed using the GLCM matrix. 

Therefore, by combining the texture feature and Jensen-

Tsallis divergence, novel balloon energy is created. By 

replacing the existing balloon energy in Equation (4), the 

total active contour energy equation will be updated. 

Since the Jensen-Tsallis divergence peaks at the 

boundary between two texture regions, and the Balloon 

energy is negative in Equation (15), the total contour 

equation (Equation (4)) is minimized at that boundary, 

leading to the active contour stopping. 

 

 

4. EXPERIMENTS AND ANALYSIS OF RESULTS 
USING VISUAL AND MATHEMATICAL MEASURES  
 

In this section, first under section 4.1, the divergence 

performance of Jensen-Tsallis is evaluated. According to 

the experiments, the divergence of Jensen-Tsallis at the 

boundary between two texture regions is maximum, so 

the active contour can better determine the boundary 

between the two regions. In section 4.2, the value of each 

variable used in the simulations is suggested based on the 

table. In section 4.3, the proposed method is compared to 

active contour methods based on discrete cosine 

conversion [16] and active contour methods based on 

filter bank properties [37]. Simulations are carried out in 

MATLAB R2016. In the experiments, two groups of 

images were used. The first group is artificial images 

from the Brodatz database [48], which consists of two 

types of textures. The second group is images from the 

Berkeley database that represent natural images. Images 

are selected in 256 × 256 sizes.  

 

4. 1. Jensen-Tsallis Divergence Function         One 

texture image from Brodatz database is shown in Figure 

2. The histogram shows that the gray levels of the image 

are L = 0, ..., 174. A part of another texture is placed 

inside the previous image to create an image with two 

textures. As can be seen in the second image, two bell-

shaped curves indicate the two textures. As shown in 

Figure 2, the histogram has been enhanced with gray 

levels 174 to 221. This means that level 174 is the optimal 

threshold for detecting boundaries between textures. By 

applying the Jensen-Tsallis algorithm to the second 

image, it can be seen that the algorithm is maximized at 

the level of 168, which can be considered approximating 

the gray level 168 as the segmentation threshold. Based 

on the obtained threshold, it can be concluded that the 

Jensen-Tsallis algorithm can be useful for segmenting 

such images. 

 

4. 2. Selecting Parameters           Before performing 

the tests, six significant parameters need to be adjusted.  

 

 

  
Histogram of single-texture 

images 
a) Single texture image 

  
A histogram of an image with 

two textures 

b) Image with two 

textures 

 
C) The result of Jensen-Tsallis divergence 

Figure 2. Jensen-Tsallis divergence function 
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First, it examines the α and β parameters, which are the 

weights used to calculate the internal energy of a contour. 

Both the α and β coefficients are fixed and positive. A 

value of α is between [0,1] and a value of β is between 

[0,0.1]. A contour's length and its evolution rate are 

controlled by the α parameter, while its curvature is 

controlled by the β parameter. The active contour jumps 

over the object boundary if a large value of α is selected. 

The active contour becomes very slow and reaches the 

limit with a significant number of iterations if a value of 

α is set too small. In light of other parameters, a value of 

α between [0.2,0.5] is suggested. Generally, the second 

parameter β is chosen close to 0, otherwise, it might 

increase contour oscillation, which is undesirable. γ 

represents the energy factor of the image that helps the 

active contour move toward the object boundary. This 

value is chosen between [0.01, 0.001].  When the active 

contour faces a local minimization problem, the balloon 

energy factor λ helps the active contour cross local 

minima. The value of λ is selected between [0,1]. K is the 

coefficient of the Jensen-Tsallis function for determining 

the appropriate threshold for separating objects from 

backgrounds. An amount greater than zero is chosen. 

LCM is calculated by selecting a window around each 

pixel image. The size of that window is determined by 

W. We should not be too large as it will increase 

computations and the algorithm will slow down. If W is 

selected too small, the texture pattern may not be found. 

As described in the following Table 1, the above 

parameters have been used for this paper. 

 
4. 3. Jensen-Tsallis K Parameters Selection          
Section 4.1 explains that divergences create a threshold 

that the active contour can be used to locate the boundary 

of an object in the image. This paper uses the Jensen-

Tsallis divergence for this purpose. A Jensen-Tsallis 

divergence is a generalized form of Jensen-Shannon 

divergence that has an adjustment parameter known as k. 

When the k-parameter is changed, a distinct threshold is 

created that can help the contour move to the boundary 

of the target object. If k = 1, the divergence is the same 

as the Jensen-Shannon divergence, and based on that, the 

segmentation operation is performed. The best value for 

k is chosen based on the images for which Ground Truth 

is available, along with the flowchart of Figure 3. 

Initially, k0 is assumed for the parameter k, and the new 

position of the contour in the image is determined based 

on this assumption. Depending on the position of the 

contour and how many setpoints of the active contour 

have reached the boundary, the decision is made to 

 

 
TABLE 1. Parameters values of the proposed algorithm 

W λ γ β α 

5 0.2 0.001 0.05 0.2 

Get the image

K=k0

Determine the new position of the 

active contour

K=K+1ESCB=ESCB_max

The best k parameter for 

Jensen -Tsallis 

divergence

NO

YES

 
Figure 3. A flowchart for determining the best parameter K 

for the Jensen-Tsallis divergence function 

 

 

update K, or to complete the process selection of 

parameter K. To update parameter K, it is increased one 

unit, then the percentage of setpoints that reach the 

boundary is calculated. This process is repeated until the 

contour approximates the object boundary or matches it. 

For updating K, adding one unit to the value of k, and 

calculating the percentage of points touching the 

boundary is adjusted. This process is repeated until the 

contour approximates the object boundary or matches it. 

The value of k at which the most contour setpoints reach 

the boundary is used as the divergence parameter (k). 

Next, other images are segmented using the K selected in 

the previous step. It is significant to note that the value of 

k is between zero and one. The k parameter in this study 

is selected by incrementing it by 0.0015 for each iteration 

and the most accurate value for k is about 0.08. 

 

4. 4. Test Results          In this section, the proposed 

method is applied to two groups of images (artificial 

images and natural images). Figure 4 demonstrates the 

superiority of Jensen- Tsallis  divergence segmentation 

over other divergences. Figure 5 shows four artificial 

images with different textures, the first row of which 

shows the initial contour, and the fourth row shows the 

segmentation results for each image. In Figure 5, the 

second and third rows compare segmentation results for 

methods using discrete cosine conversions [16] and filter  
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Original image 

   

Based on Kullback-

Leibler divergence 

   

Based on Cauchy-

Schwarz divergence 

   

Based on Jensen-

Shannon divergence 

   

Based on Jensen- 

Tsallis divergence 

Figure 4. Segmented results of three images using four divergences 
 

 

Butterfly1 Rooster Camel Turtle  

    

a 

    

b 

    

c 

    

d 

Figure 5. Comparison of segmentation results for synthetic 
images, a) initial contour, b) based on DCT [16], c) based on 
filter banks [37], and d) the proposed method 

 
 

bank texture properties [37]. These simulations visually 

demonstrate the superiority of the proposed method over 

other methods. In Figure 6, the simulation results of the 

proposed method are shown on a variety of natural 

texture images to analyze its performance further. 
 

4. 5. Performance of Jensen-Tsallis Divergence 
Compared to Other Divergences            In section 3.2, 

various methods are described for obtaining the distance 

between two probability density functions, such as the 

Kullback-Leibler, Cauchy-Schwarz, Jensen-Shannon, 

and Jensen- Tsallis  divergences.  Distance between two 

probability density functions is crucial for distinguishing 

two areas within an image. Equation (13) states that the 

Jensen-Tsallis divergence function has a variable 

parameter k. The variable parameter allows the algorithm 

to better find the boundary between the two areas of the 

image and will allow the best segmentation to occur. 

When k is 1, the Jensen- Tsallis  divergence is the same 

as the Jensen-Shannon divergence.  

 
4. 6. Quantitative Evaluation          When evaluating 

the performance of a method, just a visual comparison 

will not suffice, and the results should be analyzed 

through various parameters. Two quantitative parameters 

were used to compare our method with the previous 

approaches. The first of these is the Maximum Distance 

of the obtained Active contour from the Desired contour 

(MDAD) [49], which is defined as follows: 

MDAD = max (min (d(C(s). Ć)))  (16) 

In this equation, d (C (s).C ́) is the distance between the 

active contour and the desired contour C. Second, 𝐸𝑆𝐶𝐵 

[28] is used, whose equation is as follows: 

𝐸𝑆𝐶𝐵 =
𝑆𝐶𝐵(𝑁)

𝑁
  (17) 
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In Equation (17), N is the number of contour points and 

SCB(N) is the number of contour points that fall on the 

object boundary. 

In Table 2, the MDAD values for all of the above 

images are shown after applying the three methods. In all 

images, a small amount of MDAD indicates a contour 

that is closer to the actual contour, which means better 

segmentation of the subject. In Table 3, a comparison of 

the ESCB percentages for all test images is shown. Table 

3 shows that, unlike the other two approaches, the 

proposed method has a higher ESCB percentage, which 

means that more contour points are correctly located at 

the boundary. 

 
4. 7. Robustness to Noise         To evaluate the noise 

performance, the proposed method was tested by adding 

two types of noise to a textured image. In the first 

experiment, Gaussian noise with zero mean and different 

variances was applied to the image and the robustness of 

the proposed method was evaluated. In Figure 7, the first 

row shows the Gaussian noisy images as well as the 

segmentation results. The next experiment included Salt 

and Pepper noise of various densities, added to the image 

for robustness evaluation.  
 

 
TABLE 2. A comparison between the MDAD parameter in the 

proposed method and two other methods for segmenting 

textural images 

Test images 

Methods 

DCT energy-

based [16] 
based on filter 

banks [37] 
Proposed 

Turtle 6.4 6.1 5.4 

Camel 5.2 4.6 4.2 

Rooster 5.0 4.7 4.5 

Butterfly1 5.2 5.8 5.1 

Tiger 11.2 3.3 3.2 

Dog1 10.7 11.0 4 

Dog2 9.7 10.1 9.6 

Butterfly2 5.1 5.5 4.4 

 

 

 a b c d 

Gaussian 

    

Salt & 

Pepper  
    

Figure 7. The effect of two types of noise on the input image 

and the segmentation results using the proposed method. 

Gaussian: a) original image, b) σ2 = 0.1, c) σ2 = 1, d) σ2 =
1.9, Salt & Pepper: a) original image, b) d = 0.1, c) d = 0.5, 

d) d = 0.7 

Butterfly2 Dog2 Dog1 Tiger  

    

a 

    

b 

    

c 

    

d 

Figure 6. Comparison of segmentation results for natural 

images, a) original image, b) based on DCT [16], c) based on 

filter banks [37], and d) the proposed method 

 
 
 

TABLE 3. A comparison between the ESCB parameter in the 

proposed method and two other methods for segmenting 

textural images 

Test images 

Methods 

DCT energy-

based [16] 
based on filter 

banks [37] 
Proposed 

Turtle 88.7 90.6 95 

Camel 88.6 78.4 95 

Rooster 87.3 77.9 94 

Butterfly1 75 93.2 94.3 

Tiger 91 83.1 93 

Dog1 79.3 80.1 96.0 

Dog2 75 83.3 87 

Butterfly2 90.3 92.2 92 

 
 
 

The second row shows noisy images and results of 

segmentation at noise densities of d = 0.1, 0.5, and 0.7, 

where, for example, d = 0.1 means 10% of the pixels in 

the image are noisy. Based on these experiments, the 

proposed method is typically able to segment objects 

correctly even if noise levels are high. 

 

4. 8. Comparison of the Speed of the Proposed 
Method with other Methods           In this subsection, 

the time consumed for execution of the proposed 

algorithm is compared with two previous works. These 

three methods were tested on textured images with 

different and complex objects. The test images have 256 

× 256 dimensions. For these eight images, Table 4 shows 

the convergence time of the three methods. According to 

Table 4, the proposed method takes less time than the 

other compared methods. Thus, the proposed algorithm 

is faster for the purpose of detecting textured objects. 
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TABLE 4. Comparing the convergence time of two previous 

methods and the proposed algorithm 

Test images Methods Execution time (s) 

Turtle 

DCT energy-based [16] 44 

based on filter banks [37] 65 

Proposed 35 

Camel 

DCT energy-based [16] 43 

based on filter banks [37] 62 

Proposed 34 

Rooster 

DCT energy-based [16] 47 

based on filter banks [37] 64 

Proposed 36 

Butterfly1 

DCT energy-based [16] 45 

based on filter banks [37] 63 

Proposed 35 

Tiger 

DCT energy-based [16] 47 

based on filter banks [37] 66 

Proposed 34 

Dog1 

DCT energy-based [16] 45 

based on filter banks [37] 66 

Proposed 33 

Dog2 

DCT energy-based [16] 42 

based on filter banks [37] 63 

Proposed 32 

Butterfly2 

DCT energy-based [16] 43 

based on filter banks [37] 64 

Proposed 33 

 
 
5. CONCLUSION 
 

In this paper, a novel active contour model based on the 

Jensen-Tesalis divergence is presented that can be 

applied to artificial texture images as well as natural 

textures. To improve the active contour performance, the 

old external energy of the active contour has been 

combined with the new external energy based on the area 

information of the image. because information about the 

area helps the contour to be better absorbed towards the 

object's edge. The external energy is calculated based on 

the features extracted from the integration of the co-

occurrence matrix method and Jensen-Tsallis divergence, 

and it corrects the previous external energy. MATLAB 

software was used to conduct the simulations. 

Experimental results show that segmentation results are 

better for both artificial and natural textures. 

In addition to converging the contour to the exact 

boundary of the object, this method also solves the 

problem of local minimization. The method uses a 

parametric active contour, so it is faster than methods that 

use a level set contour. However, the use of the GLCM 

algorithm slows down the segmentation process, so it 

cannot be applied to online applications. The proposed 

model is limited in segmentation of one object at a time 

and is not developed for multiple objects simultaneously. 

This is the main limitation of all parametric active 

contour models. We plan to implement a new active 

contour model based on more flexible divergences in the 

future works. 
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Persian Abstract 

 چکیده 
هدف و   ییشناسا  یها براروش   نیترو محبوب   نیاز کارآمدتر  یکیکانتور فعال    یهاکند. مدل  یم  فا یا  ماشین  یینایمختلف ب  عملیات در    ینقش مهم  ی،بافت  رِیواتص  بخش بندی

. ابتدا،  کندی ارائه م  ریبافت تصو  یاساس انرژ  رب  مقاوم  یسازنهیچارچوب کم  کی( با  PACM)  یمدل کانتور فعال پارامتر  کیمقاله    نیهستند. ا  ریدر تصو  ایاش  یبندبخش

در داخل و   GLCMبافت    یهایژگی. پس از آن، بر اساس وشوندی( استخراج میسطح خاکستر  رخدادیهم  سی)ماتر  GLCMبا استفاده از    یاصل  ریبافت تصو  یهایژگیو

  یی شود. واگرا  ی اضافه م  کیبا استفاده از معادله بالون به کانتور فعال پارامتر  سیتسال-جنسن   یی. واگراشودی محاسبه م  های انرژ  سی تسال-جنسنیی  خارج از کانتور فعال، واگرا

  ی ژگ یبا و  یساز  نهیکم  یتابع انرژ  نی. اشودیحداکثر است، که منجر به به حداقل رساندن معادله کانتور فعال در مرز جسم هدف م  ریتصو  نهیزمو پس   نهیزم   شیپ  نی در مرز ب

دارد و به فاصله   از ین  هیفقط به کانتور اول  یشنهادیمدل پ  ،یقبل  یهابرخلاف مدل  ن،یکند. همچن  یریجلوگ  PACM  یدر مدل ها  یمحل  یاز وجود حداقل ها  تواند  یبافت م

 ی تربخشت یرضا جینتا  یشنهادیپ  کردیرو  هک  دهندی نشان م   یع یو طب  یمصنوع  ریبا تصاو  هاشیآزما  ،یبندبخش  یی. از نظر دقت و کاراستیهدف وابسته ن  ی از ش  هیکانتور اول

 .آورده استبه دست  اخیر یهانسبت به روش 
 


