Ratcheting Analysis of Steel Plate under Cycling Loading using Dynamic Relaxation Method Experimentally Validated

Document Type : Original Article

Authors

Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

The present study aimed to introduce a numerical method to study ratcheting strains of rectangular plates. A new numerical analysis was conducted by development of dynamic relaxation method combined with MATLAB software to evaluate the ratcheting behavior of the thin steel plate under mentioned loading condition. In order to verify the results, experimental tests were performed under stress-controlled conditions by a zwick/roell amsler HB100 machine and bending ratcheting of CK45 steel plate at room temperature was studied. Under stress-controlled conditions with non-zero mean stress, ratcheting behavior occurred on thin plate. Moreover, a finite element analysis was carried out by Abaqus using nonlinear isotropic/kinematic (combined) hardening model. The results showed that the rate of ratcheting strain decreased with an increase in cycle number. It was found that the hysteresis loops were wider in experimental method than those of other methods because of more energy dissipation. The numerical results are in a good agreement with the simulation and experimental data. Comparison of errors between these methods obviously demonstrate high accuracy of the new introduced method.

Keywords


  1. Zeinoddini, M., Ezzati, M., and Fakheri. J., "Uniaxial strain ratcheting behavior of dented steel tubular: An experimental study", Engineering Failure Analysis, Vol. 44, (2014), 202-216. DOI: 10.101/j.engfailanal.2014.05.016
  2. Paul, S.K., "A critical review of experimental aspects in ratcheting fatigue: microstructure to specimen to component", Journal of Materials Research and Technology, Vol. 8, No. 5 (2019), 4894-4914. DOI: 10.1016/j.jmrt.2019.06.014
  3. Paul, S.K. "Effect of anisotropy on ratcheting: an experimental investigation on IFHS steel sheet." Materials Science and Engineering: A, Vol. 538, (2012), 349-355. DOI: 10.1016/j.msea.2012.01.058
  4. Zhu, J., Chen, X., Xue, F., and Yu. W.,"Bending ratcheting tests of Z2CND18. 12 stainless steel." International Journal of Fatigue, Vol. 35, No. 1, (2012), 16-22. DOI: 10.1016/j.ijfatigue.2011.04.008
  5. Abdel-Karim, M., "Effect of elastic modulus variation during plastic deformation on uniaxial and multiaxial ratchetting simulations." European Journal of Mechanics-A/Solids, Vol. 30, No. 1, (2011), 11-21. DOI: 10.1016/j. euromechsol.2010.08.002
  6. Khademia, E., Majzoobib, G. H., Bonora, N., "A Strain range dependent cyclic plasticity model", International Journal of Engineering Transactions B: Applications, Vol. 30, No. 2, (2017), 321-329. DOI: 10.5829/idosi.ije.2017.30.02b.20
  7. Dutta, K., Ray, K K., "Ratcheting strain in interstitial free steel", Materials Science and Engineering: A, Vol. 575, (2013), 127-135. DOI: 10.1016/j.msea.2013.02.052
  8. Yu, X. J., Kumar, K. S., "Uniaxial, load-controlled cyclic deformation of recrystallized molybdenum sheet", Materials Science and Engineering: A, Vol. 540, (2012), 187-197. DOI: 10.1016/j.msea.2012.01.124
  9. Zhang, J., Jiang, Y., "An experimental investigation on cyclic plastic deformation and substructures of polycrystalline copper" International Journal of Plasticity, Vol. 21, No. 11 (2005): 2191-2211. DOI: 10.1016/j.ijplas.2005.02.004
  10. Paul, S. K., Sivaprasad, S., Dhar, S., Tarafder,S., "True stress controlled ratcheting behavior of 304 L N stainless steel" Journal of Materials Science, Vol. 47, (2012), 4660-4672. DOI: 10.1007/s10853-012-6334-1
  11. Portier, L., Calloch, S., Marquis, D., Geyer, P., "Ratchetting under tension–torsion loadings: experiments and modelling" International Journal of Plasticity, Vol. 16, No. 3, (2000), 303-335. DOI: 10.1016/S0749-6419(99)00056-X
  12. Lin, Y. C., Chen, X. M., Chen, G., "Uniaxial ratcheting and low-cycle fatigue failure behaviors of AZ91D magnesium alloy under cyclic tension deformation" Journal of Alloys and Compounds, Vol. 509, No. 24, (2011), 6838-6843. DOI: 10.1016/j.jallcom.2011.03.129
  13. Rezaiee-Pajand, M. and Sinaie S., "Calibration of hardening rules for cyclic plasticity", International Journal of Engineering Transactions A: Basics, Vol. 26, No. 4, (2013), 351-364. DOI: 10.5829/idosi.ije.2013.26.04a.04
  14. Dong, Y., Kang, G., Liu, Y., Jiang, H., "Multiaxial ratcheting of 20 carbon steel: Macroscopic experiments and microscopic observations", Materials Characterization, Vol. 83, (2013), 1-12. DOI: 10.1016/j.matchar.2013.05.014
  15. Kang, G., Dong, Y., Liu, Y., Jiang, H., "Macroscopic and microscopic investigations on uniaxial ratcheting of two-phase Ti–6Al–4V alloy", Materials Characterization, Vol. 92, (2014), 26-35. DOI: 10.1016/j.matchar.2014.02.014
  16. Collins, M., and Cosgrove, T., "Dynamic relaxation modelling of braced bending active gridshells with rectangular sections." Engineering Structures, Vol. 187, (2019), 16-24. DOI: 10.1016/j.engstruct.2019.02.001
  17. Golmakani, M. E. and Kadkhodayan, M., "Non-linear thermo-mechanical bending behavior of thin and moderately thick functionally graded sector plates using dynamic relaxation method", International Journal of Engineering Transactions C: Aspects, Vol. 29, No. 6, (2016), DOI: 10.5829/idosi.ije.2016.29.06c.00
  18. Zhang, Q., Jiang B., Xiao, Zh., Cui, W., and Liu J., "Post-buckling analysis of compressed rods in cylinders by using dynamic relaxation method." International Journal of Mechanical Sciences, Vol. 159 (2019), 103-115. DOI: 10.1016/j.ijmecsci.2019.05.040
  19. Rezaiee-Pajand, M., and Estiri, H., "Computing the structural buckling limit load by using dynamic relaxation method." International Journal of Non-Linear Mechanics, Vol. 81, (2016), 245-260. DOI: 10.1016/j.ijnonlinmec.2016.01.022
  20. Esmaeilzadeh, M., and Kadkhodayan M., "Dynamic analysis of stiffened bi-directional functionally graded plates with porosities under a moving load by dynamic relaxation method with kinetic damping." Aerospace Science and Technology, Vol. 93, (2019), 105333. DOI: 10.1016/j.ast.2019.105333
  21. Kadkhodayan, M., Alamatian J., "A new fictitious time for the dynamic relaxation (DXDR) method", International Journal for Numerical Methods in Engineering, Vol. 74, No. 6, (2008), 996-1018. DOI: 10.1002/nme.2201
  22. Namadchi, A. H., and Alamatian. J., "Explicit dynamic analysis using Dynamic Relaxation method." Computers & Structures, Vol. 175, (2016), 91-99. DOI: 10.1016/j.compstruc.2016.07.008
  23. Rezaiee-Pajand, M., and Estiri H., "Mixing dynamic relaxation method with load factor and displacement increments." Computers & Structures, Vol. 168, (2016), 78-91. DOI: 10.1016/j.compstruc.2016.02.011
  24. Rezaiee-Pajand, M., and Estiri H., "Finding buckling points for nonlinear structures by dynamic relaxation scheme." Frontiers of Structural and Civil Engineering, Vol. 14, No. 1 (2020), 23-61. DOI:10.1007/s11709-019-0549-z
  25. Gale, S., and Lewis, W.J., "Patterning of tensile fabric structures with a discrete element model using dynamic relaxation." Computers & Structures, Vol. 169, (2016), 112-121. DOI: 10.1016/j.compstruc.2016.03.005
  26. Wang, X., Cai, J., Yang, R., and Feng J., "Form-finding of deployable mesh reflectors using dynamic relaxation method." Acta Astronautica, Vol. 151, (2018), 380-388. DOI: 10.1016/j.actaastro.2018.06.017
  27. Shariati, M., Mehrabi, H., "Energy-based prediction of low-cycle fatigue life of CK45 steel and SS316 stainless steel", Journal of Solid Mechanics, Vol. 6, No. 3, (2014), 278-288.
  28. Rezaiee-Pajand, M., Alamatian, J., "The dynamic relaxation method using new formulation for fictitious mass and damping", Structural Engineering and Mechanics, Vol. 34, No.1, (2010), 109-133. DOI: 10.12989/sem.2010.34.1.109
  29. Rezaee Pajand, M., and Taghavian Hakkak, M., "Nonlinear analysis of truss structures using dynamic relaxation", International Journal of Engineering Transactions B: Applications, Vol. 19, No.1 (2006), 11-22.
  30. Shafabakhsh G., Motamedi M., “Sensitivity analysis of road actual conditions to evaluate the optimal positioning of geogrid using finite elements and dynamic methods”, International Journal of Engineering Transactions C: Aspects, Vol. 29, No. 9, (2016), 1235-1241. DOI: 10.5829/idosi.ije.2016.29.09c.08
  31. Jamal-Omidi, M., Mohammadi Suki M.R., "A numerical study on aluminum plate response under low velocity impact”, International Journal of Engineering Transactions C: Aspects, Vol. 30, No. 3, (2017), 440-448. DOI: 10.5829/idosi.ije.2017.30.03c.14