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A B S T R A C T  
 

 

The decision tree is one of the most important algorithms in the classification which offers a 

comprehensible model of data. In building a tree we may encounter a memory limitation. The present 

study aims to implement an incremental scalable approach based on fast splitting, and employs a pruning 
technique to construct the decision tree on a large dataset to reduce the complexity of the tree. The 

proposed algorithm constructs the decision tree without storing the entire dataset in the primary memory 
via employing a minimum number of parameters. Furthermore, the J-max Pre pruning method was used 

to reduce the complexity with acceptable results. Experimental results show that this approach can create 

a balance between the accuracy and complexity of the tree and overcome the difficulties of the 
complexity of the tree. In spite of the appropriate accuracy and time, the proposed algorithm could 

produce a decision tree with less complexity on a large dataset. 

doi: 10.5829/ije.2021.34.08b.01 
 

 
1. INTRODUCTION1 
 

Todays, a large amount of data is stored in a variety of 

information sources which can be used as valuable 

knowledge. In order to analyze and process the data and 

extract the knowledge, the data mining process is used in 

different ways [1]. Classification is one of the most 

widely used methods for data mining in order to provide 

a model for specifying the label of different samples 

based on their characteristics. In this regard, the decision 

tree is one of the most widely used algorithms which can 

produce understandable human descriptions of 

relationships in a dataset [2]. Further, this algorithm is 

one of the most widely used algorithms in pattern 

recognition domain due to its simplicity and 

interpretation, rule representation in a hierarchical 

format, cost and time of proper construction, the ability 

to work with continuous and discrete data, the need for 

prior knowledge and accurate presentation.  

The C4.5, ID3, and CART are regarded as the most 

common decision tree algorithms. These algorithms have 
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two phases: growth, pruning. In the growth phase, the 

dataset is recursively divided so that all records within a 

section can have the same class while the nodes are 

repeatedly pruned to prevent overfitting phenomena in 

the pruning phase [1]. Recently, an algorithm was 

developed to construct a decision tree focusing on the 

construction time presented to maximize accuracy. The 

strength of this algorithm is the construction of the tree in 

a limited time. In other words, when there is enough time 

to build a tree, the algorithm should choose the feature to 

split having the most benefit while it chooses the most 

effective feature in terms of time when the time is limited. 

However, the method has not been implemented for big 

data with respect to the complexity of the resulting tree 

[3]. 

 

1. 1. Complexity of Decision Tree       The 

interpretation ability is one of the most important benefits 

of the decision tree. However, there is a negative 

relationship between the tree dimensions and 

interpretation ability. In other words, an increase in the 
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complexity of the tree results in decreasing the 

interpretation ability [4]. It is worth noting that the 

complexity of the tree is measured by some criteria such 

as the total number of nodes, the tree levels, the depth of 

the tree, and the number of traits used. Nevertheless, the 

complexity of the tree can be controlled by specifying the 

appropriate stop condition or using the pruning method 

on the tree. The growth phase continues until a stop 

condition occurs. The pre-and post-pruning methods are 

regarded as the two basic pruning approaches. In the first 

approach, several limitations are applied during the 

construction of the tree while it is simplified after the 

construction of the whole tree. The calculations of the 

entire data can be regarded as the traditional criteria for 

determining the best attribute for the split. Some of them 

utilized discrete methods to select numerical features 

while some used costly evaluations. However, none of 

these methods are appropriate for dealing with large 

dataset. Data integration in an incremental form through 

using all dataset is another method for constructing 

decision trees. However, this method disregards the 

complexity of the tree, and interpretation ability of DTFS 

algorithms are more efficient than all other methods due 

to the use of all trained data, the lack of computational 

overhead, as well as the use of a quick criterion for 

splitting continuous variables [5]. Ignoring the tree 

complexity and the effect of pruning on the accuracy of 

the tree are considered as two disadvantages of this 

method. 

 
1. 2. Incremental Scalable Method       The present 

study proposes an incremental scalable approach based 

on fast splitting and pruning for the decision tree 

construction in order to reduce the complexity of the tree. 

In this regard, the decision tree is constructed from all the 

trained data, without storing all data in memory. The use 

of all training data results in increasing the reliability of 

the model. In the proposed method, the data are 

incrementally entered into the tree and accordingly the 

decision tree is developed. In order to control the 

complexity of the tree, the J-Max pre-pruning is used [6]. 

The proposed approach focuses on both challenges of 

identifying the best attribute for development and losing 

interpretation capability, despite a large amount of data. 

The simulation results indicate that the proposed 

algorithm can balance the accuracy and complexity of the 

tree. 
The present study is organized as follows: Section 2 

presents the general issues related to the decision tree. In 

Section 3, the decision-making tree works on large 

datasets are reviewed and a new category is provided for 

these algorithms. In Section 4, an algorithm is proposed 

based on using an incremental and pre-pruning method to 

construct a tree. Section 5 indicates the data analysis 

results and are compared with other algorithms. Finally, 

the conclusion is explained in Section 6. 

2. BACKGROUNDS 
 
2. 1. Decision Tree       The decision tree has a 

hierarchical structure and supervised learning that 

implemented using divide and conquer strategy. In this 

method, features are used for data classification as a tree 

structure. Tree nodes are connected by edges. Edges are 

conditions that are split at each node. Each extracted rules 

are a unique path from the root to leaf nodes. 

The growth phase is the primary phase of making the 

decision tree by which, the training dataset is recursively 

partitioned until all records within a section have the 

same class. Each partition adds a new node to the tree. 

For a set of records inside P, the condition t is determined 

for further segmentation of the set into P1, P2, … Pm. 

Then, the new nodes P1 to Pm are created and inserted as 

the children of P. The node P is labeled with the 

condition t and the nodes P1 to Pm are recursively split. 

They are not split up if all records within a section 

represent a class. The node is considered as a leaf and is 

labeled with the same class. After constructing the 

decision tree, the tree starts to scroll from the root to the 

end of one of the leaves for classifying a new record. 

Finally, the leaf label is returned as the result [7]. 

 

2. 2. Splitting Measures        Selecting the attribute for 

branching is one of the main problems in the decision 

tree. Based on the type of data, the split in each node can 

be binary or multiple. The branch type is most often 

binary if the values of the attributes are continuous. 

However, the split may be binary or multiple if the 

attribute values are discrete. In order to select the best 

attribute in node branching, the degree of purity and 

distribution of the homogeneous class in each category 

should be considered. In order to determine the degree of 

purity and select the appropriate attribute for node 

expansion, various criteria such as the Gini's criterion and 

Entropy are implemented. The following formula is used 

for calculating each of these values [8]:  
Entropy determines the purity of a set of data, which 

represents the qualitative division of the training 

examples based on a feature. If the target feature includes 

c different values, the occurrence probability of each is 

Pi, and the entropy I is defined as : 

2

1

( ) log
=

= −
c

i i

i

Entropy I p p  (1) 

Based on the irregularities as impurities in a set of 

training examples, the effectiveness of an attribute is 

defined in data classification. The criterion is regarded as 

the expected reduction in irregularity, which is obtained 

by separating the examples based on this attribute. The 

information gain of a feature is the amount of entropy 

reduction, which is obtained by separating the samples 

through this feature. The information gain of a feature 

such as A, for the value of I, is defined as Equation (2): 
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In the above equation, the first item is the amount of 

data entropy and the second item is the expected entropy 

value after the data separation. Value  A  represents a set 

of all possible values for attribute A. Iv indicates a subset 

of I, in which the values of attribute A is v. With respect 

to feature A, the uncertainty of the entity is obtained from 

Equation (3): 

2

1

# #
( ) log

=

= −
c

i

classj classj
SplitInfo A

I I
 (3) 

Equation (4) is used to calculate the ratio of 

information gain. The Gain Ratio indicates how much the 

feature separates the data uniformly. The denominator 

eliminates those features having large amounts of 

uniform distribution values. 

( , )
( )

( )
=

Gain I A
GainRatio A

SplitInfo A
 (4) 

 
2. 3. Stopping Criteria       Stopping condition in the 

growing phase is regarded as another important variable 

for decision tree algorithms. The growth phase is 

completed when the resolution is no longer useful, or a 

category can be applied to all instances in the subset [9]. 

The general rules for stopping are as follows: 
•All examples of training data sets belong to a same 

class. 

•The tree has reached the maximum depth. 

•The number of samples in a leaf node is less than the 

minimum number of parent samples. 

•The number of records in the current node is less than 

the threshold value. 

•The selection criterion is less than one threshold. 

 

2. 4. Decision Tree Pruning       In general, the 

interpretation ability is one of the distinguishing features 

of the decision tree which are considered more than other 

tree features by researchers. Importantly, a decrease in 

tree complexity leads to a decrease in interpretation 

ability. By increasing the complexity of the decision tree, 

a considerable increase takes place in the occurrence 

probability of overfitting. In addition, the training error 

decreases while the test error increases [2]. The reason 

for the occurrence of this phenomenon is the noise in the 

training dataset or inappropriate selection of training 

data. 
Pruning approach is regarded as one of the most 

common ways to reduce the complexity, overcome the 

overfitting, and finding the appropriate tree size. Further, 

the pruning can reduce the decision tree size by removing 

those parts of the tree having little power for 

classification. Furthermore, pruning leads to a reduction 

in the complexity of the final classification and an 

improvement in the prediction accuracy. The pruning 

aims to extract those sub-trees which prevent the 

occurrence of overfitting phenomena. 

In general, pruning methods are divided into two pre 

and post-pruning groups. Pre-pruning is implemented 

during the tree development in the growth phase in order 

to prevent excessive tree growth, useless branching, and 

rapid tree stopping in the growth phase. In addition, this 

method is utilized to reduce the time and memory 

required. However, the early stop of the tree is the main 

disadvantage of this method, which may obtain better 

results during the continuation of tree expansion. As for 

the post-pruning approach, a number of branches are 

removed by using statistical tests after building the entire 

tree. This method is used to create a balance between the 

accuracy and complexity of the tree. However, the 

computational overhead due to the processing after the 

tree construction is regarded as the main limitation [10]. 

Since the tree must be completely constructed and a lot 

of time and memory should be allocated to the tree 

construction despite a large amount of data during the 

post-pruning methods, the pre-pruning method was 

implemented in the present study. As building a complete 

tree is not necessary for pre-pruning techniques, it can be 

useful for large-scale applications. 

The J-measure is one of the pre-pruning methods, 

used as an information theory tool to measure the content 

of the rules extracted from the tree [11]. Assuming that 

the form of the rules extracted from the tree is in the form 

if Y=y Then X=x, the value of the information content of 

the rules is calculated by using Equation (5) : 

( ) ( ) ( );    ;= = =J X Y y p y j X Y y  (5) 

p(y) represents the probability which the preceding rule 

occurs, and j(X:Y=y) is calculated by Equation (6): 

2

2

( | )
( ; ) ( | ) log ( )

( )

(1 ( | )
(1 ( | )) log ( )

1 ( )

= =

−
+ −

−

p x y
j X Y y p x y

p x

p x y
p x y

p x

 (6) 

J pruning method is presented based on the J 

measurement criterion for reducing the overfitting. In this 

way, the value of j is calculated for each tree node. If j-

value of a node was less than its father value, the branch 

should be pruned accordingly. Otherwise, the process 

will continue. The reduction of the number of rules or 

nodes with acceptable accuracy which reduces the 

occurrence of overfitting is the main advantage of using 

this pruning method. However, the j-pruning technique 

may be locally optimal since the value of a node pruned 

due to the less value of j for its father may increase in 

subsequent branches and accordingly reduces the tree 

efficiency. 
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In order to overcome the problem at hand, j-pruning 

was developed, by which a new approach called "J-max" 

was presented. Based on this method, in addition to the 

J-value, the J-max value of that node is computed by 

using Equation (7). The J-max value is checked if the j-

value of a node is less than its father's value. In addition, 

the tree growth continues because the J-value may 

increase again if the J-max value of that node is greater 

than its previous j-values. The growth continues until the 

j-value and J-max ares equal. In order to calculate the J-

max value, the following formula is used [6]: 

2 2

( ),max{ ( | ),

1 1
log ( ), (1 ( | )) log ( )}

( ) 1 ( )

=

−
−

MaxJ p y p x y

p x y
p x p x

 (7) 

Based on the results, compared to the j-pruning 

technique, this approach can reduce the number of rules 

or nodes and improve accuracy in most cases. Therefore, 

j-max pruning method was used in the proposed 

algorithm. 

 

 

3. RELATED WORKS 
 
Generally, the algorithms used to construct decision trees 

from large datasets are classified into sampling, data list, 

and incremental categories. 

 

3. 1. Sampling Algorithm        Based on sampling 

category, the samples are first selected from the main 

collection. Then, the decision tree algorithm is applied to 

the selected sample. In order to prevent the storage of all 

data in the main memory, ICE and BOAT, divide the 

training data into some sections. For each section, a 

decision tree is created by using a traditional algorithm 

such as C4.5 or CART, and the likes. In the next stage, 

the decision tree of each segment is individually 

processed or combined without any need to get all the 

data in memory. High flexibility in dealing with 

increasing or decreasing data in partitions is regarded as 

the major benefit of this method although the reliability 

of the model is low due to the lack of the use of the entire 

data in this method. The timing of the sampling 

algorithm, the dependence of the results on the sampling 

technique and the time required to construct the tree for 

a set of different data are some challenges of this method 

[12,13]. 
 

3. 2. Data List Algorithm       In order not to store all 

data in the main memory, this approach implements a list 

of structures for each feature which is mainly stored in 

the disk memory and it is used for devising and 

developing, instead of using the records. The SLIQ is 

considered as one of the algorithms for this method, 

which creates a list structure for each attribute storing in 

the disk space [14]. In addition, the algorithm creates an 

additional list, including a class of each instance, along 

with the number of tree nodes, which saved the sample 

and keeps it in the main memory. Given that the 

magnitude of this list relies on the number of records, it 

may create some problems in a large dataset. Further, the 

SPRINT algorithm is an improved SLIQ method. Storing 

a separate list in the main memory is not essential when 

a column is added to the list structure for the maintenance 

class of each instance. However, the entire list should be 

read from the disk memory for each expansion. A dual 

space of the training data is essential as the magnitude of 

the list structure is proportional to the number of records 

in each branch in both of the above-mentioned methods. 

Despite a large amount of data and reading from the disk, 

the implementation time of the algorithm is high. Thus, 

list structure processing is performed in a multiprocessor 

or parallel manner in order to solve the problem at hand 

[15]. Further, the Rainforest algorithm uses the list to 

display the features, while the different values of the 

attributes are only kept, which results in decreasing the 

number of records. The present algorithm aims to reduce 

the space occupied by memory, due to the type of list 

structure of the related feature. However, the list should 

be kept in memory as an increase takes place on the list 

size if various values of a variable are available. All the 

data must be read twice and written once when a list is 

made, which is not appropriate for large datasets [16]. 
 

3. 3. Incremental Algorithm       Based on the 

incremental algorithm, the data contributes to the tree 

structure in order to make the decision tree by using the 

entire dataset [17]. The VFDT algorithm included in this 

category makes the decision tree constantly, irrespective 

of the number of samples. First, the records should be 

randomly selected in order to create the original tree. 

Then, all the records are entered into the tree 

incrementally and scrolled through. In the next stage, the 

information gain is calculated when the number of 

records in a leaf reaches a certain number. The VFDT 

algorithm must compute all the different classification 

conditions for all numerical attributes, which is very 

time-consuming due to the diverse data [18]. DTFS is 

another algorithm which adds data to the tree 

incrementally in order to exclude the training data in the 

main memory and solve the computational overhead 

problem. Based on this algorithm, the Gain Ratio is used 

to select the best feature for branching. Only the s stored 

record in the node is considering for development and 

accordingly, the best split ratio is searched among the s 

records. Then, the mean values for all records in a class 

are calculated for each variable as the split criterion. As 

a result, Gain Ratio is calculated based on the obtained 

values, upon which the best feature is selected. Selecting 

the split property using the s records accelerates the 

process of branching [4]. Table 1 indicates a comparison  
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TABLE 1. Comparison of decision tree construction 

algorithms in the face of large datasets 

Method Advantages Disadvantages 

SLIQ 

The basis for the 

development of many 

algorithms 

Speed up training time 

Needing extra 

space 

Keeping 

definition lists 

SPRINT 
Reducing memory 

overhead than SLIQ 

CLOUDS [19] 
Decreasing the time of 

selection 

RainForest 

Providing a storage 

method 

Reducing memory 

overhead 

BOAI [20] 
Speeding up the training 

time 

BOAT 
Building a tree with a 

double-scanned data Using a small 

subset of data 

Wasting time due 

to data selection ICE 

Having high flexibility in 
dealing with increasing or 

decreasing data in 

partitions 

VFDT High speed 

Needing 

preprocess 

Needing to set 

many parameters 

Wasting time due 

to the calculation 

of all branching 

states 

DTFS 

High speed 

Lacking memory 

overhead 

Splitting fast continuous 

data 

The complexity of 

the tree 

Needing to 

preprocess 

 

 

of the decision tree algorithms for large datasets.  In this 

table, the algorithms are compared in terms of criteria 

such as the speed of decision tree construction, 

overcoming the challenge of memory limitation, the need 

for re-scanning the dataset, using all or part of the dataset, 

and the need to adjust multiple parameters.  

Due to this, the DTFS is selected as the basis for the 

proposed algorithm. The details of this algorithm are 

discussed further. The use of all training data in the tree 

construction, lack of memory and time overload due to 

the lack of using a special data structure, the simplicity 

of implementation, and an appropriate timeframe are 

regarded as some advantages of the DTFS algorithm. In 

addition to all these benefits, the following points should 

be taken into consideration in the basic approach:  

• In the DTFS method, no preprocessing is used to 

determine the order of data entry unless the records are 

uniform in terms of class variables. However, it is 

essential to consider the time of making the main body of 

the tree and using the appropriate data to increase 

performance. For this purpose, it is important to consider 

pre-processing on the data in order to determine the 

priority of entering the tree. 

• The time to develop the decision tree in the DTFS 

method is based on the parameter s, and the node is 

developed if the number of records stored in the node is 

greater than the parameter s, which is constant from 

beginning to the end of tree construction. Naturally, the 

behavior of tree development in the roots should not be 

similar to the leaves of the final stages. In addition, in a 

large tree, it may be stored in a large number of leaves, 

less than s records. In this case, there are many leaves 

which never meet the development conditions. Further, 

the total records stored in these leaves can be regarded as 

a limiting factor for memory. 

• In the DTFS, the size of the tree and its complexity is 

deemphasized. The results of some studies indicated that 

changing the value of the parameter s does not play a 

significant role in the runtime and accuracy of the 

algorithm. However, the effect of this parameter on the 

complexity of the tree has not been addressed yet. 
 

 

4. PROPOSED METHOD 
 
In the present study, a new method was presented for 

constructing a decision tree based on the incremental 

method which can create a balance between accuracy and 

complexity, in addition to overcoming the challenge of 

the large dataset. In decision tree construction, all the data 

should be simultaneously present in the memory in order 

to determine the best attribute for development. Memory 

restrictions may prevent the calculation of the best 

feature by increasing the number of records. In addition, 

reducing the interpretation ability and increasing the 

error rate are regarded as the main challenge for high 

data. In order to overcome the problems of not locating 

training data in main memory, along with computational 

overhead, the algorithm incrementally injects the training 

data into the tree. In this way, each record is scrolled in 

the tree and stored in the leaves. When the algorithm 

decides to develop a node, only the label of the input edge 

of the leaf is updated if all the records in the leaf belong 

to the same class while the leaf begins to develop if the 

classes are different. The J-max measure is used to decide 

on the branching in order to reduce the complexity of the 

developmental leaves. In the present study, the proposed 

method focuses on both the main memory challenge and 

the complexity of the tree. The principles of the proposed 

method are summarized as follows: 

 
4. 1. Determining the Priority of Entering Records 
into the Tree            First, the similarity criteria, based 

on the type of input data, are used for determining the 
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priority of entering the records into the tree. Then, the 

amount of similarity between different records is 

calculated and accordingly a number indicating the 

similarity of a record with other records is obtained. In 

the next stage, the records are sorted by the descending 

order of similarity. Finally, based on the results, those 

data having the most similarity with others are placed at 

the beginning, while those having the least similarity 

with others are placed at the end. Based on this approach, 

those records having better quality are used in the early 

stages of tree construction. 
 

4. 2. Selecting a Feature for Branching         Gain 

Ratio is regarded as one of the most important criteria for 

splitting a decision tree in traditional algorithms. This 

method is time-consuming because each branch should 

compute all available states for all the features, and select 

the features with the highest Gain Ratio value. Given the 

timeliness of calculating this criterion, the proposed 

algorithm only uses the records stored in that node to 

compute and select the best feature while deciding to split 

a node. In categorical variables, each value is calculated 

as the split criterion while the mean values appearing for 

all records of a class are regarded for calculating the split 

criterion in continuous variables. Finally, the best feature 

is selected as the Gain Ratio values. Choosing the best 

feature for branching based on using records within a 

node accelerates the process of branching. 

 

4. 3. Reducing Complexity      The algorithm starts 

constructing the tree with an empty node called root. At 

the beginning, the root of the tree is a leaf. The training 

records are entered into the root, and scrolled through the 

tree to the end of a leaf and stored in the leaf. When the 

number of records stored in one sheet reaches its 

maximum number, the algorithm can follow one of the 

following alternatives: 
• If all records stored within a node are in the same class, 

the leaf is not expanded, and only the edge of that node 

is updated while the records stored in this node are 

deleted. 

• If the included records in this leaflet belong to different 

classes, an edge should be created for each attribute value 

after selecting the appropriate branching attribute based 

on the aforementioned formulas. J and J-max values are 

calculated by using Equations (6) and (7) for each of the 

possible edges in the developmental leaf. Then, the 

conditions for creating the new node are studied as 

follows: 

1) If the j-value of a node is greater than its father's value, 

the node development is performed. 

2) If the j-value of a node is less than its father's value, 

the J-max value of that node is checked.  

3) If the J-max of that node is greater than its previous J-

values, the tree node development is performed. If node 

j-value is equal to J-max, the node development is 

stopped. 

The records for each edge are stored inside the leaf 

related to that edge. The mean values in that class are 

assigned as the edge label. The previous level node is 

converted to an internal node and accordingly, the 

records stored in this node are deleted. Then, the 

inference phase is completed after scrolling and 

processing all records. Finally, the majority class is 

assigned as a label to all leaves. If a node is empty, the 

majority of the parent class is given to. 

For example, assume that based on the records in a 

node, the Y attribute is chosen as the best attribute for the 

branch, and the values of this property are y1, y2, y3. 

There are three possible branches for this node. Each tree 

rule is as follows: 
 

( )

( )

( )

 1   1 

0.00113,  0.02315

 

 1  1   1

 0.0013,  0.01157

 

 1   2   1

 0.00032,  0.0116

 

 1   3  

If X x then Class C

J value Jmax

If X x and Y y then Class C

J value Jmax

If X x and Y y then Class C

J value Jmax

If X x and Y y then Clas

=

− = =

= =

− = =

= =

− = =

= =

( )

 2

 0.0032,  0.001

s C

J value Jmax− = =

 

As for the rule 2, the branching is created as the node 

j-value is greater than father j-value, based on rule 3, the 

value of j is less than the value of j of his father, but since 

the J-max value is greater than the value of j in the 

previous step, this split occurs. In the case of rule 4, none 

of the branching conditions has been established. 
 

4. 4. Scrolling Trees and Classifying Samples        
The tree scroll starts from the root and extends to the 

depths of the tree to reach a leaf, based on the split 

characteristics and the edge values. A path is selected for 

scrolling, and the difference of the value of the property 

with the average value calculated for that edge is the 

lowest value. The classification process in the decision 

tree algorithm for a new record involves scrolling the tree 

from root to reach a leaf. Then, the class corresponding 

to that leaf is determined as the class to the desired 

sample. 
 

4. 5. Analyzing Time Complexity     The time 

complexity of the algorithm for a dataset with record m, 

feature d, and maximum value k for each attribute 

consists of three parts as follows:  
• The similarity of records is calculated with each other 

and the records are sorted based on their similarity, 
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which uses a sorting algorithm of ( log )O m m  in the 

worst case. 

• The scrolling cost for each record is equal to the 

maximum depth of the tree, (log )O m , and the cost for 

the entire dataset is equal to ( log )O m m  . 

• The Gain Ratio should be calculated to select the 

best attribute for splitting in each node with the s record 

for all attributes and the time allocated ( , )O s d . As this 

criterion is calculated 
m

s
 times, the cost of this part of 

the algorithm is ( , , , )=
m

O s d d m
s

. The j and J-max 

values for each selected feature should be computed at 

most k times and the execution time for this part of the 

algorithm equals to ( , , )O d k m . 

• In sum, the time complexity of the algorithm is 

equivalent to (2 log ) ( log )+ =O m m dkm O m m . 

 

 

5. EXPERIMENTAL RESULTS 
 
In the present study, a method was presented for 

constructing a decision tree with an incremental approach 

and J-max pruning. The records of training dataset were 

entered into the decision tree and accordingly the 

decision tree was developed in an appropriate time. In the 

proposed method, the records were entered into the tree 

based on the priorities specified and placed in the 

appropriate leaf. Gain Ratio was used to determine the 

split priority in each node. Finally, the J-max approach 

was implemented to balance the accuracy and complexity 

of the developmental leaves. In this section, the proposed 

method is evaluated and compared with C4.5 and DTFS 

algorithms in terms of accuracy, runtime, and 

complexity. 

In order to implement the proposed method and other 

tree algorithms, a system with a RAM of 6GB, CPU2.1 

GHz, 64-bit Win10 operating system was used. During 

the implementation and comparison of algorithms, the 

same conditions were used for execution. Table 2 

displays the dataset used for testing, taken from UCI [21], 

without any missing value. Then, the Hold Out method 

was used to divide the data. At each run, 70% of the 

dataset was considered for training and 30% of the total 

were implemented for evaluation. In the next stage, in 

order to validate the results, the Hold Out method was 

repeated 10 times and the average results were reported. 

In all experiments, the algorithms C4.5, C4.5 through 

applying J-max pruning, DTFS with different values of 

s, and the proposed method were compared. 

Table 3 illustrates the depth of the tree and the 

accuracy of the algorithms on the MagicGamma set. The 

tree depth, which is regarded as a criterion for tree 

complexity, was modified in DTFS for various s values. 

In addition, the tree complexity is high in C4.5, and the 

driller could not play a significant role in reducing 

complexity. The proposed algorithm was obtained by 

creating a balance between the accuracy and complexity. 

As for the DTFS algorithm, the accuracy decreases 

when s is low. As shown in Table 5, in the Poker dataset, for 

s = 10, the precision of the algorithm is 50%, which 

increased by increasing s. However, this is not always true. 

For example, the accuracy is decreased again at s = 600. The 

decision tree is very complicated, although the C4.5 

algorithm has the highest output accuracy. The results 

indicated that the proposed algorithm could obtain a balance 

between the accuracy and complexity. Other parameters 

indicating the complexity of the tree, including the number 

 

 
TABLE 2. Dataset used in the experiments. 

Dataset Number of attributes Number of records 

Magic Gamma 11 19020 

Statlog(Shuttle) 9 58000 

Poker 11 1025010 

 

 
TABLE 3. Accuracy, Depth and Nodes of decision trees for the 

MagicGamma dataset 

Algorithm 
Test 

Accuracy 
Tree Depth 

Number of 

Nodes 

C4.5 69.96 191 12292 

C4.5+Jmax 70.8 186 7378 

DTFS(S=10) 67.72 110 3208 

DTFS(S=100) 68.5 59 343 

DTFS(S=200) 67.64 44 172 

DTFS(S=400) 69.34 27 82 

DTFS(S=600) 71 19 55 

Proposed Method 68.48 30 103 

 

 
TABLE 4. Accuracy, Depth and Nodes of decision trees for the 

Poker dataset 

Algorithm 
Test 

Accuracy 
Tree Depth 

Number of 

Nodes 

C4.5 54.28 85 8256 

C4.5+Jmax 53.78 69 2580 

DTFS(S=10) 50.18 30 1171 

DTFS(S=100) 53.16 24 598 

DTFS(S=200) 53.82 25 310 

DTFS(S=400) 53.77 28 235 

DTFS(S=600) 54.24 18 107 

Proposed Method 53.41 30 231 
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TABLE 5. Accuracy, Depth and Nodes of decision trees for the 

Shuttle dataset 

Algorithm 
Test 

Accuracy 
Tree Depth 

Number of 

Nodes 

C4.5 81.25 105 2548 

C4.5+Jmax 80.78 87 1899 

DTFS(S=10) 81.34 31 781 

DTFS(S=100) 79.23 17 196 

DTFS(S=200) 79.01 15 115 

DTFS(S=400) 78.69 11 64 

DTFS(S=600) 78 13 85 

Proposed Method 78.65 15 126 

 

 

 

of nodes and the number of leaf nodes, which in fact 

represents the number of rules derived from the decision 

tree, are given in the table for the three test datasets. 

 

 

 

6. CONCLUSION 
 
In this paper, an algorithm was developed to construct 

decision trees on large datasets. In the proposed approach, 

the record entry priority is assigned to the tree. Then, the set 

of training data is based on the specified priorities of the 

record entered into the decision tree and placed in the 

appropriate leaf. For each node, its complexity is calculated 

at appropriate times, and it is decided whether to split it or 

not. Gain ratio has been used to determine the best feature 

for branching. Finally, to avoid the complexity of the tree 

and to balance the precision and complexity, the 

developmental leaves are pruned using the J-max criteria. 

In general, the most important components of the 

proposed framework are: achieving a balance between the 

precision and complexity using the pre-pruning approach, 

solving the memory limitation problem for a large dataset 

by entering data incrementally into the decision tree, 

increasing reliability of the model by making decision tree 

of all training data, lacking of memory and time overload 

due to the non-use of especial data structure. One of the 

unfortunate results in our algorithm is that the number of 

nodes and tree depth is slightly higher when it reaches the 

same accuracy as the DTFS algorithm. Of course, we have 

eliminated the dependence of the results on the value of the 

s parameter, and it is important to strike a balance between 

the accuracy and complexity of the tree. Also, with the use 

of a pruning method, the development of nodes is largely 

prevented so that the tree's complexity is kept to an 

acceptable level. Other decision criteria for nodal branching 

can be considered for further work. Also, using parallel 

computing can increase speed of the algorithm. 
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Persian Abstract 

 چکیده 
  در ساخت درخت تصمیم ممکن است با محدودیت حافظه روبرو   .دهدارائه می  هادادهقابل دركی از  مدل  بندي است كه  ي طبقه ها یکی از مهمترین الگوریتمدرخت تصمیم  

پیچیدگی   كهينحو بهاست  شدهارائههاي حجیم  دادهصمیم بر رويپذیر افزایشی بر مبناي تقسیم سریع و هرس، جهت ساخت درخت ترویکرد مقیاس   مطالعه حاضردر  شویم.  

سازد. همچنین  می مهیا  در حافظه اصلی و با حداقل تعداد پارامتر لازم  داده  مجموعهسازي كل  ون نیاز به ذخیره شده درخت تصمیم را بدساخت درخت كاهش یابد. الگوریتم ارائه 

دهد با استفاده از این ينشان ها دادهیج آزمایش بر روي مجموعهاست. نتاشدهستفاده ا J-Maxمبتنی بر  هرس شیپاز روش  قبولقابل دقتبهجهت كاهش پیچیدگی و دستیابی 

ي  وجود دقت و زمان اجرا  شده باكرد. الگوریتم ارائه ل از پیچیدگی درخت غلبهو بر مشکلات حاص  افتیدست اي میان دقت و پیچیدگی درخت  توان به موازنه رویکرد می 

 سازد.برروي داده هاي حجیم می هاي كمترمناسب، درخت تصمیمی با پیچیدگی 
 


