
IJE TRANSACTIONS B: Applications Vol. 34, No. 08, (August 2021) 1810-1818

Please cite this article as: S. Lotfi, M. Ghasemzadeh, M. Mohsenzadeh, M. Mirzarezaei, The Construction of Scalable Decision Tree based on Fast
Splitting and J-Max Pre Punning on Large Datasets, International Journal of Engineering, Transactions B: Applications, Vol. 34, No. 08, (2021)
1810-1818

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

The Construction of Scalable Decision Tree based on Fast Splitting and J-Max Pre

Pruning on Large Datasets

a Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
b Computer Department, Engineering Campus, Yazd University

P A P E R I N F O

Paper history:
Received 03 March 2021
Received in revised form 18 April 2021
Accepted 24 April 2021

Keywords:
Fuzzy Decision Trees
Large Dataset
Fuzzy Entropy
Fuzzy Partitioning
Incremental Approach

A B S T R A C T

The decision tree is one of the most important algorithms in the classification which offers a

comprehensible model of data. In building a tree we may encounter a memory limitation. The present

study aims to implement an incremental scalable approach based on fast splitting, and employs a pruning
technique to construct the decision tree on a large dataset to reduce the complexity of the tree. The

proposed algorithm constructs the decision tree without storing the entire dataset in the primary memory
via employing a minimum number of parameters. Furthermore, the J-max Pre pruning method was used

to reduce the complexity with acceptable results. Experimental results show that this approach can create

a balance between the accuracy and complexity of the tree and overcome the difficulties of the
complexity of the tree. In spite of the appropriate accuracy and time, the proposed algorithm could

produce a decision tree with less complexity on a large dataset.

doi: 10.5829/ije.2021.34.08b.01

1. INTRODUCTION1

Todays, a large amount of data is stored in a variety of

information sources which can be used as valuable

knowledge. In order to analyze and process the data and

extract the knowledge, the data mining process is used in

different ways [1]. Classification is one of the most

widely used methods for data mining in order to provide

a model for specifying the label of different samples

based on their characteristics. In this regard, the decision

tree is one of the most widely used algorithms which can

produce understandable human descriptions of

relationships in a dataset [2]. Further, this algorithm is

one of the most widely used algorithms in pattern

recognition domain due to its simplicity and

interpretation, rule representation in a hierarchical

format, cost and time of proper construction, the ability

to work with continuous and discrete data, the need for

prior knowledge and accurate presentation.

The C4.5, ID3, and CART are regarded as the most

common decision tree algorithms. These algorithms have

*Corresponding Author Institutional Email:
m.ghasemzadeh@yazd.ac.ir (M. Ghasemzadeh)

two phases: growth, pruning. In the growth phase, the

dataset is recursively divided so that all records within a

section can have the same class while the nodes are

repeatedly pruned to prevent overfitting phenomena in

the pruning phase [1]. Recently, an algorithm was

developed to construct a decision tree focusing on the

construction time presented to maximize accuracy. The

strength of this algorithm is the construction of the tree in

a limited time. In other words, when there is enough time

to build a tree, the algorithm should choose the feature to

split having the most benefit while it chooses the most

effective feature in terms of time when the time is limited.

However, the method has not been implemented for big

data with respect to the complexity of the resulting tree

[3].

1. 1. Complexity of Decision Tree The

interpretation ability is one of the most important benefits

of the decision tree. However, there is a negative

relationship between the tree dimensions and

interpretation ability. In other words, an increase in the

S. Lotfia, M. Ghasemzadeh*b, M. Mohsenzadeha, M. Mirzarezaeea

mailto:m.ghasemzadeh@yazd.ac.ir

S. Lotfi et al. / IJE TRANSACTIONS B: Applications Vol. 34, No. 08, (August 2021) 1810-1818 1811

complexity of the tree results in decreasing the

interpretation ability [4]. It is worth noting that the

complexity of the tree is measured by some criteria such

as the total number of nodes, the tree levels, the depth of

the tree, and the number of traits used. Nevertheless, the

complexity of the tree can be controlled by specifying the

appropriate stop condition or using the pruning method

on the tree. The growth phase continues until a stop

condition occurs. The pre-and post-pruning methods are

regarded as the two basic pruning approaches. In the first

approach, several limitations are applied during the

construction of the tree while it is simplified after the

construction of the whole tree. The calculations of the

entire data can be regarded as the traditional criteria for

determining the best attribute for the split. Some of them

utilized discrete methods to select numerical features

while some used costly evaluations. However, none of

these methods are appropriate for dealing with large

dataset. Data integration in an incremental form through

using all dataset is another method for constructing

decision trees. However, this method disregards the

complexity of the tree, and interpretation ability of DTFS

algorithms are more efficient than all other methods due

to the use of all trained data, the lack of computational

overhead, as well as the use of a quick criterion for

splitting continuous variables [5]. Ignoring the tree

complexity and the effect of pruning on the accuracy of

the tree are considered as two disadvantages of this

method.

1. 2. Incremental Scalable Method The present

study proposes an incremental scalable approach based

on fast splitting and pruning for the decision tree

construction in order to reduce the complexity of the tree.

In this regard, the decision tree is constructed from all the

trained data, without storing all data in memory. The use

of all training data results in increasing the reliability of

the model. In the proposed method, the data are

incrementally entered into the tree and accordingly the

decision tree is developed. In order to control the

complexity of the tree, the J-Max pre-pruning is used [6].

The proposed approach focuses on both challenges of

identifying the best attribute for development and losing

interpretation capability, despite a large amount of data.

The simulation results indicate that the proposed

algorithm can balance the accuracy and complexity of the

tree.
The present study is organized as follows: Section 2

presents the general issues related to the decision tree. In

Section 3, the decision-making tree works on large

datasets are reviewed and a new category is provided for

these algorithms. In Section 4, an algorithm is proposed

based on using an incremental and pre-pruning method to

construct a tree. Section 5 indicates the data analysis

results and are compared with other algorithms. Finally,

the conclusion is explained in Section 6.

2. BACKGROUNDS

2. 1. Decision Tree The decision tree has a

hierarchical structure and supervised learning that

implemented using divide and conquer strategy. In this

method, features are used for data classification as a tree

structure. Tree nodes are connected by edges. Edges are

conditions that are split at each node. Each extracted rules

are a unique path from the root to leaf nodes.

The growth phase is the primary phase of making the

decision tree by which, the training dataset is recursively

partitioned until all records within a section have the

same class. Each partition adds a new node to the tree.

For a set of records inside P, the condition t is determined

for further segmentation of the set into P1, P2, … Pm.

Then, the new nodes P1 to Pm are created and inserted as

the children of P. The node P is labeled with the

condition t and the nodes P1 to Pm are recursively split.

They are not split up if all records within a section

represent a class. The node is considered as a leaf and is

labeled with the same class. After constructing the

decision tree, the tree starts to scroll from the root to the

end of one of the leaves for classifying a new record.

Finally, the leaf label is returned as the result [7].

2. 2. Splitting Measures Selecting the attribute for

branching is one of the main problems in the decision

tree. Based on the type of data, the split in each node can

be binary or multiple. The branch type is most often

binary if the values of the attributes are continuous.

However, the split may be binary or multiple if the

attribute values are discrete. In order to select the best

attribute in node branching, the degree of purity and

distribution of the homogeneous class in each category

should be considered. In order to determine the degree of

purity and select the appropriate attribute for node

expansion, various criteria such as the Gini's criterion and

Entropy are implemented. The following formula is used

for calculating each of these values [8]:
Entropy determines the purity of a set of data, which

represents the qualitative division of the training

examples based on a feature. If the target feature includes

c different values, the occurrence probability of each is

Pi, and the entropy I is defined as :

2

1

() log
=

= −
c

i i

i

Entropy I p p (1)

Based on the irregularities as impurities in a set of

training examples, the effectiveness of an attribute is

defined in data classification. The criterion is regarded as

the expected reduction in irregularity, which is obtained

by separating the examples based on this attribute. The

information gain of a feature is the amount of entropy

reduction, which is obtained by separating the samples

through this feature. The information gain of a feature

such as A, for the value of I, is defined as Equation (2):

1812 S. Lotfi et al. / IJE TRANSACTIONS B: Applications Vol. 34, No. 08, (August 2021) 1810-1818

()

(,)

| |
() ()

| |

=

−  V

V

v Values A

Gain I A

I
Entropy I Entropy I

I

 (2)

In the above equation, the first item is the amount of

data entropy and the second item is the expected entropy

value after the data separation. Value A represents a set

of all possible values for attribute A. Iv indicates a subset

of I, in which the values of attribute A is v. With respect

to feature A, the uncertainty of the entity is obtained from

Equation (3):

2

1

#
() log

=

= −
c

i

classj classj
SplitInfo A

I I
 (3)

Equation (4) is used to calculate the ratio of

information gain. The Gain Ratio indicates how much the

feature separates the data uniformly. The denominator

eliminates those features having large amounts of

uniform distribution values.

(,)
()

()
=

Gain I A
GainRatio A

SplitInfo A
 (4)

2. 3. Stopping Criteria Stopping condition in the

growing phase is regarded as another important variable

for decision tree algorithms. The growth phase is

completed when the resolution is no longer useful, or a

category can be applied to all instances in the subset [9].

The general rules for stopping are as follows:
•All examples of training data sets belong to a same

class.

•The tree has reached the maximum depth.

•The number of samples in a leaf node is less than the

minimum number of parent samples.

•The number of records in the current node is less than

the threshold value.

•The selection criterion is less than one threshold.

2. 4. Decision Tree Pruning In general, the

interpretation ability is one of the distinguishing features

of the decision tree which are considered more than other

tree features by researchers. Importantly, a decrease in

tree complexity leads to a decrease in interpretation

ability. By increasing the complexity of the decision tree,

a considerable increase takes place in the occurrence

probability of overfitting. In addition, the training error

decreases while the test error increases [2]. The reason

for the occurrence of this phenomenon is the noise in the

training dataset or inappropriate selection of training

data.
Pruning approach is regarded as one of the most

common ways to reduce the complexity, overcome the

overfitting, and finding the appropriate tree size. Further,

the pruning can reduce the decision tree size by removing

those parts of the tree having little power for

classification. Furthermore, pruning leads to a reduction

in the complexity of the final classification and an

improvement in the prediction accuracy. The pruning

aims to extract those sub-trees which prevent the

occurrence of overfitting phenomena.

In general, pruning methods are divided into two pre

and post-pruning groups. Pre-pruning is implemented

during the tree development in the growth phase in order

to prevent excessive tree growth, useless branching, and

rapid tree stopping in the growth phase. In addition, this

method is utilized to reduce the time and memory

required. However, the early stop of the tree is the main

disadvantage of this method, which may obtain better

results during the continuation of tree expansion. As for

the post-pruning approach, a number of branches are

removed by using statistical tests after building the entire

tree. This method is used to create a balance between the

accuracy and complexity of the tree. However, the

computational overhead due to the processing after the

tree construction is regarded as the main limitation [10].

Since the tree must be completely constructed and a lot

of time and memory should be allocated to the tree

construction despite a large amount of data during the

post-pruning methods, the pre-pruning method was

implemented in the present study. As building a complete

tree is not necessary for pre-pruning techniques, it can be

useful for large-scale applications.

The J-measure is one of the pre-pruning methods,

used as an information theory tool to measure the content

of the rules extracted from the tree [11]. Assuming that

the form of the rules extracted from the tree is in the form

if Y=y Then X=x, the value of the information content of

the rules is calculated by using Equation (5) :

() () (); ;= = =J X Y y p y j X Y y (5)

p(y) represents the probability which the preceding rule

occurs, and j(X:Y=y) is calculated by Equation (6):

2

2

(|)
(;) (|) log ()

()

(1 (|)
(1 (|)) log ()

1 ()

= =

−
+ −

−

p x y
j X Y y p x y

p x

p x y
p x y

p x

 (6)

J pruning method is presented based on the J

measurement criterion for reducing the overfitting. In this

way, the value of j is calculated for each tree node. If j-

value of a node was less than its father value, the branch

should be pruned accordingly. Otherwise, the process

will continue. The reduction of the number of rules or

nodes with acceptable accuracy which reduces the

occurrence of overfitting is the main advantage of using

this pruning method. However, the j-pruning technique

may be locally optimal since the value of a node pruned

due to the less value of j for its father may increase in

subsequent branches and accordingly reduces the tree

efficiency.

S. Lotfi et al. / IJE TRANSACTIONS B: Applications Vol. 34, No. 08, (August 2021) 1810-1818 1813

In order to overcome the problem at hand, j-pruning

was developed, by which a new approach called "J-max"

was presented. Based on this method, in addition to the

J-value, the J-max value of that node is computed by

using Equation (7). The J-max value is checked if the j-

value of a node is less than its father's value. In addition,

the tree growth continues because the J-value may

increase again if the J-max value of that node is greater

than its previous j-values. The growth continues until the

j-value and J-max ares equal. In order to calculate the J-

max value, the following formula is used [6]:

2 2

(),max{ (|),

1 1
log (), (1 (|)) log ()}

() 1 ()

=

−
−

MaxJ p y p x y

p x y
p x p x

 (7)

Based on the results, compared to the j-pruning

technique, this approach can reduce the number of rules

or nodes and improve accuracy in most cases. Therefore,

j-max pruning method was used in the proposed

algorithm.

3. RELATED WORKS

Generally, the algorithms used to construct decision trees

from large datasets are classified into sampling, data list,

and incremental categories.

3. 1. Sampling Algorithm Based on sampling

category, the samples are first selected from the main

collection. Then, the decision tree algorithm is applied to

the selected sample. In order to prevent the storage of all

data in the main memory, ICE and BOAT, divide the

training data into some sections. For each section, a

decision tree is created by using a traditional algorithm

such as C4.5 or CART, and the likes. In the next stage,

the decision tree of each segment is individually

processed or combined without any need to get all the

data in memory. High flexibility in dealing with

increasing or decreasing data in partitions is regarded as

the major benefit of this method although the reliability

of the model is low due to the lack of the use of the entire

data in this method. The timing of the sampling

algorithm, the dependence of the results on the sampling

technique and the time required to construct the tree for

a set of different data are some challenges of this method

[12,13].

3. 2. Data List Algorithm In order not to store all

data in the main memory, this approach implements a list

of structures for each feature which is mainly stored in

the disk memory and it is used for devising and

developing, instead of using the records. The SLIQ is

considered as one of the algorithms for this method,

which creates a list structure for each attribute storing in

the disk space [14]. In addition, the algorithm creates an

additional list, including a class of each instance, along

with the number of tree nodes, which saved the sample

and keeps it in the main memory. Given that the

magnitude of this list relies on the number of records, it

may create some problems in a large dataset. Further, the

SPRINT algorithm is an improved SLIQ method. Storing

a separate list in the main memory is not essential when

a column is added to the list structure for the maintenance

class of each instance. However, the entire list should be

read from the disk memory for each expansion. A dual

space of the training data is essential as the magnitude of

the list structure is proportional to the number of records

in each branch in both of the above-mentioned methods.

Despite a large amount of data and reading from the disk,

the implementation time of the algorithm is high. Thus,

list structure processing is performed in a multiprocessor

or parallel manner in order to solve the problem at hand

[15]. Further, the Rainforest algorithm uses the list to

display the features, while the different values of the

attributes are only kept, which results in decreasing the

number of records. The present algorithm aims to reduce

the space occupied by memory, due to the type of list

structure of the related feature. However, the list should

be kept in memory as an increase takes place on the list

size if various values of a variable are available. All the

data must be read twice and written once when a list is

made, which is not appropriate for large datasets [16].

3. 3. Incremental Algorithm Based on the

incremental algorithm, the data contributes to the tree

structure in order to make the decision tree by using the

entire dataset [17]. The VFDT algorithm included in this

category makes the decision tree constantly, irrespective

of the number of samples. First, the records should be

randomly selected in order to create the original tree.

Then, all the records are entered into the tree

incrementally and scrolled through. In the next stage, the

information gain is calculated when the number of

records in a leaf reaches a certain number. The VFDT

algorithm must compute all the different classification

conditions for all numerical attributes, which is very

time-consuming due to the diverse data [18]. DTFS is

another algorithm which adds data to the tree

incrementally in order to exclude the training data in the

main memory and solve the computational overhead

problem. Based on this algorithm, the Gain Ratio is used

to select the best feature for branching. Only the s stored

record in the node is considering for development and

accordingly, the best split ratio is searched among the s

records. Then, the mean values for all records in a class

are calculated for each variable as the split criterion. As

a result, Gain Ratio is calculated based on the obtained

values, upon which the best feature is selected. Selecting

the split property using the s records accelerates the

process of branching [4]. Table 1 indicates a comparison

1814 S. Lotfi et al. / IJE TRANSACTIONS B: Applications Vol. 34, No. 08, (August 2021) 1810-1818

TABLE 1. Comparison of decision tree construction

algorithms in the face of large datasets

Method Advantages Disadvantages

SLIQ

The basis for the

development of many

algorithms

Speed up training time

Needing extra

space

Keeping

definition lists

SPRINT
Reducing memory

overhead than SLIQ

CLOUDS [19]
Decreasing the time of

selection

RainForest

Providing a storage

method

Reducing memory

overhead

BOAI [20]
Speeding up the training

time

BOAT
Building a tree with a

double-scanned data Using a small

subset of data

Wasting time due

to data selection ICE

Having high flexibility in
dealing with increasing or

decreasing data in

partitions

VFDT High speed

Needing

preprocess

Needing to set

many parameters

Wasting time due

to the calculation

of all branching

states

DTFS

High speed

Lacking memory

overhead

Splitting fast continuous

data

The complexity of

the tree

Needing to

preprocess

of the decision tree algorithms for large datasets. In this

table, the algorithms are compared in terms of criteria

such as the speed of decision tree construction,

overcoming the challenge of memory limitation, the need

for re-scanning the dataset, using all or part of the dataset,

and the need to adjust multiple parameters.

Due to this, the DTFS is selected as the basis for the

proposed algorithm. The details of this algorithm are

discussed further. The use of all training data in the tree

construction, lack of memory and time overload due to

the lack of using a special data structure, the simplicity

of implementation, and an appropriate timeframe are

regarded as some advantages of the DTFS algorithm. In

addition to all these benefits, the following points should

be taken into consideration in the basic approach:

• In the DTFS method, no preprocessing is used to

determine the order of data entry unless the records are

uniform in terms of class variables. However, it is

essential to consider the time of making the main body of

the tree and using the appropriate data to increase

performance. For this purpose, it is important to consider

pre-processing on the data in order to determine the

priority of entering the tree.

• The time to develop the decision tree in the DTFS

method is based on the parameter s, and the node is

developed if the number of records stored in the node is

greater than the parameter s, which is constant from

beginning to the end of tree construction. Naturally, the

behavior of tree development in the roots should not be

similar to the leaves of the final stages. In addition, in a

large tree, it may be stored in a large number of leaves,

less than s records. In this case, there are many leaves

which never meet the development conditions. Further,

the total records stored in these leaves can be regarded as

a limiting factor for memory.

• In the DTFS, the size of the tree and its complexity is

deemphasized. The results of some studies indicated that

changing the value of the parameter s does not play a

significant role in the runtime and accuracy of the

algorithm. However, the effect of this parameter on the

complexity of the tree has not been addressed yet.

4. PROPOSED METHOD

In the present study, a new method was presented for

constructing a decision tree based on the incremental

method which can create a balance between accuracy and

complexity, in addition to overcoming the challenge of

the large dataset. In decision tree construction, all the data

should be simultaneously present in the memory in order

to determine the best attribute for development. Memory

restrictions may prevent the calculation of the best

feature by increasing the number of records. In addition,

reducing the interpretation ability and increasing the

error rate are regarded as the main challenge for high

data. In order to overcome the problems of not locating

training data in main memory, along with computational

overhead, the algorithm incrementally injects the training

data into the tree. In this way, each record is scrolled in

the tree and stored in the leaves. When the algorithm

decides to develop a node, only the label of the input edge

of the leaf is updated if all the records in the leaf belong

to the same class while the leaf begins to develop if the

classes are different. The J-max measure is used to decide

on the branching in order to reduce the complexity of the

developmental leaves. In the present study, the proposed

method focuses on both the main memory challenge and

the complexity of the tree. The principles of the proposed

method are summarized as follows:

4. 1. Determining the Priority of Entering Records
into the Tree First, the similarity criteria, based

on the type of input data, are used for determining the

S. Lotfi et al. / IJE TRANSACTIONS B: Applications Vol. 34, No. 08, (August 2021) 1810-1818 1815

priority of entering the records into the tree. Then, the

amount of similarity between different records is

calculated and accordingly a number indicating the

similarity of a record with other records is obtained. In

the next stage, the records are sorted by the descending

order of similarity. Finally, based on the results, those

data having the most similarity with others are placed at

the beginning, while those having the least similarity

with others are placed at the end. Based on this approach,

those records having better quality are used in the early

stages of tree construction.

4. 2. Selecting a Feature for Branching Gain

Ratio is regarded as one of the most important criteria for

splitting a decision tree in traditional algorithms. This

method is time-consuming because each branch should

compute all available states for all the features, and select

the features with the highest Gain Ratio value. Given the

timeliness of calculating this criterion, the proposed

algorithm only uses the records stored in that node to

compute and select the best feature while deciding to split

a node. In categorical variables, each value is calculated

as the split criterion while the mean values appearing for

all records of a class are regarded for calculating the split

criterion in continuous variables. Finally, the best feature

is selected as the Gain Ratio values. Choosing the best

feature for branching based on using records within a

node accelerates the process of branching.

4. 3. Reducing Complexity The algorithm starts

constructing the tree with an empty node called root. At

the beginning, the root of the tree is a leaf. The training

records are entered into the root, and scrolled through the

tree to the end of a leaf and stored in the leaf. When the

number of records stored in one sheet reaches its

maximum number, the algorithm can follow one of the

following alternatives:
• If all records stored within a node are in the same class,

the leaf is not expanded, and only the edge of that node

is updated while the records stored in this node are

deleted.

• If the included records in this leaflet belong to different

classes, an edge should be created for each attribute value

after selecting the appropriate branching attribute based

on the aforementioned formulas. J and J-max values are

calculated by using Equations (6) and (7) for each of the

possible edges in the developmental leaf. Then, the

conditions for creating the new node are studied as

follows:

1) If the j-value of a node is greater than its father's value,

the node development is performed.

2) If the j-value of a node is less than its father's value,

the J-max value of that node is checked.

3) If the J-max of that node is greater than its previous J-

values, the tree node development is performed. If node

j-value is equal to J-max, the node development is

stopped.

The records for each edge are stored inside the leaf

related to that edge. The mean values in that class are

assigned as the edge label. The previous level node is

converted to an internal node and accordingly, the

records stored in this node are deleted. Then, the

inference phase is completed after scrolling and

processing all records. Finally, the majority class is

assigned as a label to all leaves. If a node is empty, the

majority of the parent class is given to.

For example, assume that based on the records in a

node, the Y attribute is chosen as the best attribute for the

branch, and the values of this property are y1, y2, y3.

There are three possible branches for this node. Each tree

rule is as follows:

()

()

()

 1 1

0.00113, 0.02315

 1 1 1

 0.0013, 0.01157

 1 2 1

 0.00032, 0.0116

 1 3

If X x then Class C

J value Jmax

If X x and Y y then Class C

J value Jmax

If X x and Y y then Class C

J value Jmax

If X x and Y y then Clas

=

− = =

= =

− = =

= =

− = =

= =

()

 2

 0.0032, 0.001

s C

J value Jmax− = =

As for the rule 2, the branching is created as the node

j-value is greater than father j-value, based on rule 3, the

value of j is less than the value of j of his father, but since

the J-max value is greater than the value of j in the

previous step, this split occurs. In the case of rule 4, none

of the branching conditions has been established.

4. 4. Scrolling Trees and Classifying Samples
The tree scroll starts from the root and extends to the

depths of the tree to reach a leaf, based on the split

characteristics and the edge values. A path is selected for

scrolling, and the difference of the value of the property

with the average value calculated for that edge is the

lowest value. The classification process in the decision

tree algorithm for a new record involves scrolling the tree

from root to reach a leaf. Then, the class corresponding

to that leaf is determined as the class to the desired

sample.

4. 5. Analyzing Time Complexity The time

complexity of the algorithm for a dataset with record m,

feature d, and maximum value k for each attribute

consists of three parts as follows:
• The similarity of records is calculated with each other

and the records are sorted based on their similarity,

1816 S. Lotfi et al. / IJE TRANSACTIONS B: Applications Vol. 34, No. 08, (August 2021) 1810-1818

which uses a sorting algorithm of (log)O m m in the

worst case.

• The scrolling cost for each record is equal to the

maximum depth of the tree, (log)O m , and the cost for

the entire dataset is equal to (log)O m m .

• The Gain Ratio should be calculated to select the

best attribute for splitting in each node with the s record

for all attributes and the time allocated (,)O s d . As this

criterion is calculated
m

s
 times, the cost of this part of

the algorithm is (, , ,)=
m

O s d d m
s

. The j and J-max

values for each selected feature should be computed at

most k times and the execution time for this part of the

algorithm equals to (, ,)O d k m .

• In sum, the time complexity of the algorithm is

equivalent to (2 log) (log)+ =O m m dkm O m m .

5. EXPERIMENTAL RESULTS

In the present study, a method was presented for

constructing a decision tree with an incremental approach

and J-max pruning. The records of training dataset were

entered into the decision tree and accordingly the

decision tree was developed in an appropriate time. In the

proposed method, the records were entered into the tree

based on the priorities specified and placed in the

appropriate leaf. Gain Ratio was used to determine the

split priority in each node. Finally, the J-max approach

was implemented to balance the accuracy and complexity

of the developmental leaves. In this section, the proposed

method is evaluated and compared with C4.5 and DTFS

algorithms in terms of accuracy, runtime, and

complexity.

In order to implement the proposed method and other

tree algorithms, a system with a RAM of 6GB, CPU2.1

GHz, 64-bit Win10 operating system was used. During

the implementation and comparison of algorithms, the

same conditions were used for execution. Table 2

displays the dataset used for testing, taken from UCI [21],

without any missing value. Then, the Hold Out method

was used to divide the data. At each run, 70% of the

dataset was considered for training and 30% of the total

were implemented for evaluation. In the next stage, in

order to validate the results, the Hold Out method was

repeated 10 times and the average results were reported.

In all experiments, the algorithms C4.5, C4.5 through

applying J-max pruning, DTFS with different values of

s, and the proposed method were compared.

Table 3 illustrates the depth of the tree and the

accuracy of the algorithms on the MagicGamma set. The

tree depth, which is regarded as a criterion for tree

complexity, was modified in DTFS for various s values.

In addition, the tree complexity is high in C4.5, and the

driller could not play a significant role in reducing

complexity. The proposed algorithm was obtained by

creating a balance between the accuracy and complexity.

As for the DTFS algorithm, the accuracy decreases

when s is low. As shown in Table 5, in the Poker dataset, for

s = 10, the precision of the algorithm is 50%, which

increased by increasing s. However, this is not always true.

For example, the accuracy is decreased again at s = 600. The

decision tree is very complicated, although the C4.5

algorithm has the highest output accuracy. The results

indicated that the proposed algorithm could obtain a balance

between the accuracy and complexity. Other parameters

indicating the complexity of the tree, including the number

TABLE 2. Dataset used in the experiments.

Dataset Number of attributes Number of records

Magic Gamma 11 19020

Statlog(Shuttle) 9 58000

Poker 11 1025010

TABLE 3. Accuracy, Depth and Nodes of decision trees for the

MagicGamma dataset

Algorithm
Test

Accuracy
Tree Depth

Number of

Nodes

C4.5 69.96 191 12292

C4.5+Jmax 70.8 186 7378

DTFS(S=10) 67.72 110 3208

DTFS(S=100) 68.5 59 343

DTFS(S=200) 67.64 44 172

DTFS(S=400) 69.34 27 82

DTFS(S=600) 71 19 55

Proposed Method 68.48 30 103

TABLE 4. Accuracy, Depth and Nodes of decision trees for the

Poker dataset

Algorithm
Test

Accuracy
Tree Depth

Number of

Nodes

C4.5 54.28 85 8256

C4.5+Jmax 53.78 69 2580

DTFS(S=10) 50.18 30 1171

DTFS(S=100) 53.16 24 598

DTFS(S=200) 53.82 25 310

DTFS(S=400) 53.77 28 235

DTFS(S=600) 54.24 18 107

Proposed Method 53.41 30 231

S. Lotfi et al. / IJE TRANSACTIONS B: Applications Vol. 34, No. 08, (August 2021) 1810-1818 1817

TABLE 5. Accuracy, Depth and Nodes of decision trees for the

Shuttle dataset

Algorithm
Test

Accuracy
Tree Depth

Number of

Nodes

C4.5 81.25 105 2548

C4.5+Jmax 80.78 87 1899

DTFS(S=10) 81.34 31 781

DTFS(S=100) 79.23 17 196

DTFS(S=200) 79.01 15 115

DTFS(S=400) 78.69 11 64

DTFS(S=600) 78 13 85

Proposed Method 78.65 15 126

of nodes and the number of leaf nodes, which in fact

represents the number of rules derived from the decision

tree, are given in the table for the three test datasets.

6. CONCLUSION

In this paper, an algorithm was developed to construct

decision trees on large datasets. In the proposed approach,

the record entry priority is assigned to the tree. Then, the set

of training data is based on the specified priorities of the

record entered into the decision tree and placed in the

appropriate leaf. For each node, its complexity is calculated

at appropriate times, and it is decided whether to split it or

not. Gain ratio has been used to determine the best feature

for branching. Finally, to avoid the complexity of the tree

and to balance the precision and complexity, the

developmental leaves are pruned using the J-max criteria.

In general, the most important components of the

proposed framework are: achieving a balance between the

precision and complexity using the pre-pruning approach,

solving the memory limitation problem for a large dataset

by entering data incrementally into the decision tree,

increasing reliability of the model by making decision tree

of all training data, lacking of memory and time overload

due to the non-use of especial data structure. One of the

unfortunate results in our algorithm is that the number of

nodes and tree depth is slightly higher when it reaches the

same accuracy as the DTFS algorithm. Of course, we have

eliminated the dependence of the results on the value of the

s parameter, and it is important to strike a balance between

the accuracy and complexity of the tree. Also, with the use

of a pruning method, the development of nodes is largely

prevented so that the tree's complexity is kept to an

acceptable level. Other decision criteria for nodal branching

can be considered for further work. Also, using parallel

computing can increase speed of the algorithm.

7. REFERENCES

1. Agarwal, S., “Data mining: Data mining concepts and

techniques” In 2013 International Conference on Machine
Intelligence and Research Advancement, (2013), 203-207, IEEE,

doi: 10.1109/ICMIRA.2013.45.

2. Qolipour, F., Ghasemzadeh, M. and Mohammad-Karimi, N.,
"The Predictability of Tree-based Machine Learning Algorithms

in the Big Data Context." International Journal of Engineering,

Transactions A: Basics, Vol. 34, No. 01, (2021), 82-89, doi:

10.5829/ije.2021.34.01a.10.

3. Chen, Y.L., Wu, C.C. and Tang, K. "Time-constrained cost-

sensitive decision tree induction." Information Sciences, Vol.

354, (2016), 140-152, doi: 10.1016/j.ins.2016.03.022.

4. Priyanka and Kumar, D., "Decision tree classifier: a detailed

survey." International Journal of Information and Decision

Sciences, Vol. 12, No. 3, (2020), 246-269, doi:

10.38094/jastt20165.

5. Franco-Arcega, A., Carrasco-Ochoa, J.A., Sánchez-Díaz, G. and
Martínez-Trinidad, J.F., "Decision tree induction using a fast

splitting attribute selection for large datasets." Expert Systems

with Applications, Vol. 38, No. 11, (2011): 14290-14300, doi:

10.1016/j.eswa.2011.05.087

6. Stahl, F. and Bramer, M., "Jmax-pruning: A facility for the

information theoretic pruning of modular classification rules."
Knowledge-Based Systems, Vol. 29, (2012), 12-19, doi;

10.1016/j.knosys.2011.06.016.

7. Grossi, V., Romei, A. and Turini, F., "Survey on using constraints
in data mining." Data Mining and Knowledge Discovery, Vol.

31, No. 2, (2017): 424-464, doi: 10.1007/s10618-016-0480-z.

8. Chandra, B., Kothari, R. and Paul, P., "A new node splitting
measure for decision tree construction." Pattern Recognition,

Vol. 43, No. 8, (2010), 2725-2731, doi:

10.1016/j.patcog.2010.02.025.

9. Lomax, S. and Vadera, S., "A survey of cost-sensitive decision

tree induction algorithms." ACM Computing Surveys (CSUR),

Vol. 45, No. 2, (2013), 1-35, doi: 10.1145/2431211.2431215.

10. Brunello, A., Marzano, E., Montanari, A. and Sciavicco, G.,

"Decision tree pruning via multi-objective evolutionary

computation." International Journal of Machine Learning and

Computing, Vol. 7, No. 6, (2017), 167-175, doi:

10.18178/IJMLC.2017.7.6.641.

11. Bramer, M., "Using J-pruning to reduce overfitting in
classification trees." In Research and Development in Intelligent

Systems XVIII, Springer, London, (2002), 25-38, doi:

10.1007/978-1-4471-0119-2_3.

12. Manapragada, C., Webb, G. I., and Salehi, M., "Extremely fast

decision tree." In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data

Mining, (2018), 1953-1962, doi: 10.1145/3219819.3220005.

13. Gehrke, J., Ganti, V., Ramakrishnan, R. and Loh, W.Y., "BOAT-

optimistic decision tree construction." ACM, Vol. 28. No. 2,

(1999), doi: 10.1145/304182.304197.

14. Mehta, M., Agrawal, R. and Rissanen, J., "SLIQ: A fast scalable
classifier for data mining" International conference on extending

database technology, Springer, Berlin, Heidelberg, (1996), 18-32,
doi: 10.1007/BFb0014141.

15. Zaki, M. J. "Parallel and distributed data mining: An

introduction." In Large-scale parallel data mining, Springer,

Berlin, Heidelberg. (2000), 1-23, doi: 10.1007/3-540-46502-2_1.

16. Gehrke, J., Ramakrishnan, R. and Ganti, V., "RainForest—a

framework for fast decision tree construction of large datasets."

Data Mining and Knowledge Discovery, Vol. 4, No. 2, (2000),

127-162, doi: 10.1023/A:1009839829793.

1818 S. Lotfi et al. / IJE TRANSACTIONS B: Applications Vol. 34, No. 08, (August 2021) 1810-1818

17. Hulten, G. and Domingos, P., "Mining Decision Trees from
Streams." In Data Stream Management, Springer, Berlin,

Heidelberg, (2016), 189-208, doi: 10.1007/978-3-540-28608-

0_9.

18. Domingos, P. and Hulten, G.,"Mining high-speed data streams."

In Proceedings of the sixth ACM SIGKDD international

conference on Knowledge discovery and data mining, (2000), 71-

80, doi: 10.1145/347090.347107.

19. Ranka, S. and Singh, V., "CLOUDS: A decision tree classifier for

large datasets." In Proceedings of the 4th Knowledge Discovery

and Data Mining Conference, Vol. 2, No. 8, 1998.

20. Yang, B., Wang, T., Yang, D. and Chang, L., "BOAI: Fast
alternating decision tree induction based on bottom-up

evaluation." In Pacific-Asia Conference on Knowledge Discovery

and Data Mining, Springer, Berlin, Heidelberg, (2008), 405-416,

doi: 10.1007/978-3-540-68125-0_36.

21. Blake, C.L. and Merz, C.J., "UCI Repository of machine

learning databases [http://www. ics. uci. edu/~
mlearn/MLRepository. html]. Irvine, CA: University of

California." Department of Information and Computer Science 55

(2008).

Persian Abstract

 چکیده
 در ساخت درخت تصمیم ممکن است با محدودیت حافظه روبرو .دهدارائه می هادادهقابل دركی از مدل بندي است كه ي طبقه ها یکی از مهمترین الگوریتمدرخت تصمیم

پیچیدگی كهينحو بهاست شدهارائههاي حجیم دادهصمیم بر رويپذیر افزایشی بر مبناي تقسیم سریع و هرس، جهت ساخت درخت ترویکرد مقیاس مطالعه حاضردر شویم.

سازد. همچنین می مهیا در حافظه اصلی و با حداقل تعداد پارامتر لازم داده مجموعهسازي كل ون نیاز به ذخیره شده درخت تصمیم را بدساخت درخت كاهش یابد. الگوریتم ارائه

دهد با استفاده از این ينشان ها دادهیج آزمایش بر روي مجموعهاست. نتاشدهستفاده ا J-Maxمبتنی بر هرس شیپاز روش قبولقابل دقتبهجهت كاهش پیچیدگی و دستیابی

ي وجود دقت و زمان اجرا شده باكرد. الگوریتم ارائه ل از پیچیدگی درخت غلبهو بر مشکلات حاص افتیدست اي میان دقت و پیچیدگی درخت توان به موازنه رویکرد می

 سازد.برروي داده هاي حجیم می هاي كمترمناسب، درخت تصمیمی با پیچیدگی

