Electromagnetic Wave Absorption Properties of Barium Ferrite/Reduced Graphene Oxide Nanocomposites

Document Type : Original Article

Authors

1 Materials and Energy Research Center, Karaj, Iran

2 Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran

Abstract

Reduced graphene oxide (rGO) and M-type hexagonal ferrites such as BaFe12O19 have attracted great attention as electromagnetic (EM) wave absorbing materials in recent years. In this research, different weight percents of BaFe12O19/rGO nanocomposites were incorporated into the microwave absorbing layers and their EM wave absorption was investigated. Barium ferrite was synthesized through the co-precipitation method. Graphene oxide (GO) was synthesized through the modified Hummers’ method. The synthesized GO was reduced to rGO nanosheets using a reducing agent. The synthesized barium ferrite and rGO were then mechanically milled to form BaFe12O19/rGO nanocomposite. The chemical bondings, phase analysis, magnetic properties, particle morphology, and EM wave absorbing properties were investigated using FTIR, XRD, Vibration Sample Magnetometer (VSM), FESEM, and Vector Network Analyzer (VNA), respectively. The saturation magnetization (Ms) and the coercivity (Hc) of the synthesized BaFe12O19/rGO nanocomposite were 31 emu/g and 1.5 kOe, respectively. The EM absorption properties in the X-band (8.2-12.4 GHz) showed that the maximum reflection loss (RL) of -7.39 dB could be obtained for the nanocomposite containing only 10 wt. % of BaFe12O19/rGO nanocomposite in a resin matrix with a thickness of 2 mm.

Keywords


1.     Widanarto, W., Khaeriyah, S., Ghoshal, S.K., Kurniawan, C., Effendi, M. and Cahyanto, W.T., "Selective microwave absorption in nd3+ substituted barium ferrite composites", Journal of Rare Earths,  Vol. 37, No. 12, (2019), 1320-1325, doi: 10.1016/j.jre.2019.01.008
2.     Liu, C., Zhang, Y., Tang, Y., Wang, Z., Ma, N. and Du, P., "The tunable magnetic and microwave absorption properties of the Nb5+–Ni2+ co-doped m-type barium ferrite", Journal of Materials Chemistry C,  Vol. 5, No. 14, (2017), 3461-3472, doi: 10.1039/C7TC00393E
3.     Li, Y., Yu, M., Yang, P. and Fu, J., "Enhanced microwave absorption property of fe nanoparticles encapsulated within reduced graphene oxide with different thicknesses", Industrial & Engineering Chemistry Research,  Vol. 56, No. 31, (2017), 8872-8879, doi: 10.1021/acs.iecr.7b01732
4.     Lv, H., Ji, G., Liang, X., Zhang, H. and Du, Y., "A novel rod-like MnO2@ Fe loading on graphene giving excellent electromagnetic absorption properties", Journal of Materials Chemistry C,  Vol. 3, No. 19, (2015), 5056-5064, doi: 10.1039/C5TC00525F
5.     Zhang, X., Ji, G., Liu, W., Zhang, X., Gao, Q., Li, Y. and Du, Y., "A novel co/tio 2 nanocomposite derived from a metal–organic framework: Synthesis and efficient microwave absorption", Journal of Materials Chemistry C,  Vol. 4, No. 9, (2016), 1860-1870, doi: 10.1039/C6TC00248J
6.     Wang, C., Han, X., Xu, P., Zhang, X., Du, Y., Hu, S., Wang, J. and Wang, X., "The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material", Applied Physics Letters,  Vol. 98, No. 7, (2011), 072906, doi: 10.1063/1.3555436
7.     Singhal, S., Garg, A. and Chandra, K., "Evolution of the magnetic properties during the thermal treatment of nanosize bamfe11o19 (m= Fe, Co, Ni and Al) obtained through aerosol route", Journal of Magnetism and Magnetic Materials,  Vol. 285, No. 1-2, (2005), 193-198, doi: 10.1016/j.jmmm.2004.07.039
8.     Molaei, M., Ataie, A. and Raygan, S., "Synthesis of barium hexaferrite/iron oxides magnetic nano-composites via high energy ball milling and subsequent heat treatment", in International Journal of Modern Physics: Conference Series, World Scientific. Vol. 5, (2012), 519-526, doi: 10.1142/S2010194512002425
9.     Molaei, M., Ataie, A. and Raygan, S., "Synthesis of magnetic nano-composite by partial reduction of barium hexaferrite via high-energy ball milling", in Key Engineering Materials, Trans Tech Publ. Vol. 434, (2010), 354-356, doi: 10.4028/www.scientific.net/KEM.434-435.354
10.   Molaei, M., Ataie, A., Raygan, S., Picken, S. and Tichelaar, F., "Investigation on the effects of milling atmosphere on synthesis of barium ferrite/magnetite nanocomposite", Journal of Superconductivity and Novel Magnetism,  Vol. 25, No. 2, (2012), 519-524, doi: 10.1007/s10948-011-1322-2
11.   Molaei, M., Ataie, A., Raygan, S. and Picken, S., "Role of intensive milling in the processing of barium ferrite/magnetite/iron hybrid magnetic nano-composites via partial reduction of barium ferrite", Materials Characterization,  Vol. 101, (2015), 78-82, doi: 10.1016/j.matchar.2015.01.006
12.   Molaei, M., Ataie, A., Raygan, S., Picken, S. and Tichelaar, F., "The effect of heat treatment and re-calcination on magnetic properties of bafe12o19/Fe3O4 nano-composite", Ceramics International,  Vol. 38, No. 4, (2012), 3155-3159, doi: 10.1016/j.ceramint.2011.12.018
13.   Molaei, M., Ataie, A., Raygan, S., Picken, S., Mendes, E. and Tichelaar, F., "Synthesis and characterization of bafe12o19/Fe3O4 and bafe12o19/Fe/Fe3O4 magnetic nano-composites", Powder Technology,  Vol. 221, (2012), 292-295, doi: 10.1016/j.powtec.2012.01.015
14.   Molaei, M., Ataie, A., Raygan, S., Rahimipour, M., Picken, S., Tichelaar, F., Legarra, E. and Plazaola, F., "Magnetic property enhancement and characterization of nano-structured barium ferrite by mechano-thermal treatment", Materials Characterization,  Vol. 63, (2012), 83-89, doi: 10.1016/j.matchar.2011.11.004
15.   Molaei, M., Ataie, A., Raygan, S. and Picken, S., "Exchange bias in barium ferrite/magnetite nanocomposites", Applied Physics A,  Vol. 123, No. 6, (2017), 437.
16.   Molaei, M., Ataie, A., Raygan, S. and Picken, S., "The effect of different carbon reducing agents in synthesizing barium ferrite/magnetite nanocomposites", Materials Chemistry and Physics,  Vol. 219, No. 1, (2018), doi: 10.1016/j.matchemphys.2018.07.027
17.   Zhang, Y., Chuyang L., Kangsen P., Yufan C., Gang F., and Yujing Z. "Synthesis of broad microwave absorption bandwidth Zr4+-Ni2+ ions gradient-substituted barium ferrite." Ceramics International, Vol. 46, No. 16, (2020), 25808-25816, doi: 10.1016/j.ceramint.2020.07.062
18.   Molaei, M. and Rahimipour, M., "Microwave reflection loss of magnetic/dielectric nanocomposites of bafe12o19/TiO2", Materials Chemistry and Physics,  Vol. 167, (2015), 145-151, doi: 10.1016/j.matchemphys.2015.10.022
19.   Verma, M., Singh, A.P., Sambyal, P., Singh, B.P., Dhawan, S. and Choudhary, V., "Barium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shielding", Physical Chemistry Chemical Physics,  Vol. 17, No. 3, (2015), 1610-1618, doi: 10.1039/C4CP04284K
20.   Su, Z., Tan, L., Tao, J., Zhang, C., Yang, R. and Wen, F., "Enhanced microwave absorption properties of feni nanocrystals decorating reduced graphene oxide", Physica Status Solidi (b),  (2018), 1700553, doi: 10.1002/pssb.201700553
21. Badiei, E., P. Sangpour, M. Bagheri, and M. Pazouki. "Graphene oxide antibacterial sheets: Synthesis and characterization (research note)." International Journal of Engineering, Transactions C: Aspects, Vol. 27, No. 12, (2014), 1803-1808, doi: 10.5829/idosi.ije.2014.27.12c.01
22.   Allahyari, E., and M. Asgari. "Vibration Behavior of Nanocomposite Plate Reinforced by Pristine and Defective Graphene Sheets; an Analytical Approach." International Journal of Engineering, Transactions A: Basics, Vol.31, No. 7 (2018), 1095-1102, doi: 10.5829/ije.2018.31.07a.13
23.   Asemaneh, H. R., Laleh Rajabi, Farzad Dabirian, Neda Rostami, Ali Ashraf Derakhshan, and Reza Davarnejad. "Functionalized Graphene Oxide/Polyacrylonitrile Nanofibrous Composite: Pb2+ and Cd2+ Cations Adsorption." International Journal of Engineering, Transactions C: Aspects, Vol. 33, No. 6, (2020), 1048-1053, doi: 10.5829/ije.2020.33.06c.01
24.   Durmus, Z., Durmus, A. and Kavas, H., "Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material", Journal of Materials Science,  Vol. 50, No. 3, (2015), 1201-1213, doi: 10.1007/s10853-014-8676-3
25.   Meng, F., Wang, H., Huang, F., Guo, Y., Wang, Z., Hui, D. and Zhou, Z., "Graphene-based microwave absorbing composites: A review and prospective", Composites Part B: Engineering,  Vol. 137, (2018), 260-277, doi: 10.1016/j.compositesb.2017.11.023
26.   Yang, Z., Wan, Y., Xiong, G., Li, D., Li, Q., Ma, C., Guo, R. and Luo, H., "Facile synthesis of ZnFe2O4/reduced graphene oxide nanohybrids for enhanced microwave absorption properties", Materials Research Bulletin,  Vol. 61, (2015), 292-297, doi: 10.1016/j.materresbull.2014.10.004
27.   Song, W.-L., Guan, X.-T., Fan, L.-Z., Cao, W.-Q., Zhao, Q.-L., Wang, C.-Y. and Cao, M.-S., "Tuning broadband microwave absorption via highly conductive Fe3O4/graphene heterostructural nanofillers", Materials Research Bulletin,  Vol. 72, (2015), 316-323, doi: 10.1016/j.materresbull.2015.07.028
28.   Chen, D., Wang, G.-S., He, S., Liu, J., Guo, L. and Cao, M.-S., "Controllable fabrication of mono-dispersed rgo–hematite nanocomposites and their enhanced wave absorption properties", Journal of Materials Chemistry A,  Vol. 1, No. 19, (2013), 5996-6003, doi: 10.1039/C3TA10664K
29.   Jaiswal, R., Agarwal, K., Kumar, R., Kumar, R., Mukhopadhyay, K. and Prasad, N.E., "Emi and microwave absorbing efficiency of polyaniline-functionalized reduced graphene oxide/γ-Fe2O3/epoxy nanocomposite", Soft Matter,  Vol. 16, No. 28, (2020), 6643-6653, doi: 10.1039/D0SM00266F
30.   Zhang, X.-J., Wang, G.-S., Cao, W.-Q., Wei, Y.-Z., Liang, J.-F., Guo, L. and Cao, M.-S., "Enhanced microwave absorption property of reduced graphene oxide (rgo)-MnFe2O4 nanocomposites and polyvinylidene fluoride", ACS Applied Materials & Interfaces,  Vol. 6, No. 10, (2014), 7471-7478, doi: 10.1021/am500862g
31.   Zong, M., Huang, Y., Wu, H., Zhao, Y., Wang, Q. and Sun, X., "One-pot hydrothermal synthesis of rgo/CoFe2O4 composite and its excellent microwave absorption properties", Materials Letters,  Vol. 114, (2014), 52-55, doi: 10.1016/j.matlet.2013.09.113
32.   Liu, P., Huang, Y., Wang, L., Zong, M. and Zhang, W., "Hydrothermal synthesis of reduced graphene oxide–Co3O4 composites and the excellent microwave electromagnetic properties", Materials Letters,  Vol. 107, (2013), 166-169, doi: 10.1016/j.matlet.2013.05.136
33.   Shu, R., Wu, Y., Zhang, J., Wan, Z. and Li, X., "Facile synthesis of nitrogen-doped cobalt/cobalt oxide/carbon/reduced graphene oxide nanocomposites for electromagnetic wave absorption", Composites Part B: Engineering,  (2020), 108027, doi: 10.1016/j.compositesb.2020.108027
34.   Guo, X., Bai, Z., Zhao, B., Zhang, R. and Chen, J., "Tailoring microwave-absorption properties of CoxNiy Alloy/rGO nanocomposites with tunable atomic ratios", Journal of Electronic Materials,  Vol. 46, No. 4, (2017), 2164-2171, doi: 10.1007/s11664-016-5152-7
35.   Shu, R., Wu, Y., Li, W., Zhang, J., Liu, Y., Shi, J. and Zheng, M., "Fabrication of ferroferric oxide–carbon/reduced graphene oxide nanocomposites derived from Fe-based metal–organic frameworks for microwave absorption", Composites Science and Technology,  (2020), 108240, doi: 10.1016/j.compscitech.2020.108240
36.   Li, J., Yang, S., Jiao, P., Peng, Q., Yin, W., Yuan, Y., Lu, H., He, X. and Li, Y., "Three-dimensional macroassembly of hybrid c@ cofe nanoparticles/reduced graphene oxide nanosheets towards multifunctional foam", Carbon,  Vol. 157, (2020), 427-436, doi: 10.1016/j.carbon.2019.10.074
37.   Hakimi, M., Alimard, P. and Yousefi, M., "Green synthesis of reduced graphene oxide/Sr2CuMgFe28O46 nanocomposite with tunable magnetic properties", Ceramics International,  Vol. 40, No. 8, (2014), 11957-11961, doi: 10.1016/j.ceramint.2014.04.032
 
 
 
 
 
 
 
 
 
 
38.   Pei, S. and Cheng, H.-M., "The reduction of graphene oxide", Carbon,  Vol. 50, No. 9, (2012), 3210-3228, doi: 10.1016/j.carbon.2011.11.010
39.   Lisjak, D. and Drofenik, M., "The mechanism of the low-temperature formation of barium hexaferrite", Journal of the European Ceramic Society,  Vol. 27, No. 16, (2007), 4515-4520, doi: 10.1016/j.jeurceramsoc.2007.02.202
40.   Ohlan, A., Singh, K., Chandra, A. and Dhawan, S.K., "Microwave absorption behavior of core− shell structured poly (3, 4-ethylenedioxy thiophene)− barium ferrite nanocomposites", ACS Applied Materials & Interfaces,  Vol. 2, No. 3, (2010), 927-933, doi: 10.1021/am900893d
41.   Zhao, C., Shen, M., Li, Z., Sun, R., Xia, A. and Liu, X., "Green synthesis and enhanced microwave absorption property of reduced graphene oxide-SrFe12O19 nanocomposites", Journal of Alloys and Compounds,  Vol. 689, (2016), 1037-1043, doi: 10.1016/j.jallcom.2016.08.078
42.   Wang, L., Huang, Y., Li, C., Chen, J. and Sun, X., "A facile one-pot method to synthesize a three-dimensional graphene@ carbon nanotube composite as a high-efficiency microwave absorber", Physical Chemistry Chemical Physics,  Vol. 17, No. 3, (2015), 2228-2234, doi: 10.1039/C4CP04745A
43.   Zhou, C., Geng, S., Xu, X., Wang, T., Zhang, L., Tian, X., Yang, F., Yang, H. and Li, Y., "Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption", Carbon,  Vol. 108, (2016), 234-241, doi: 10.1016/j.carbon.2016.07.015
44.   Qiang, R., Du, Y., Wang, Y., Wang, N., Tian, C., Ma, J., Xu, P. and Han, X., "Rational design of yolk-shell c@ c microspheres for the effective enhancement in microwave absorption", Carbon,  Vol. 98, (2016), 599-606, doi: 10.1016/j.carbon.2015.11.054
45.   Narang, S.B., Pubby, K. and Singh, C., "Thickness and composition tailoring of k-and ka-band microwave absorption of BaCoxTixFe12−2xO19 ferrites", Journal of Electronic Materials,  Vol. 46, No. 2, (2017), 718-728, doi: 10.1007/s11664-016-5059-3
46.   Mohamadi, M., Kowsari, E., Yousefzadeh, M., Chinnappan, A. and Ramakrishna, S., "Highly-efficient microwave absorptivity in reduced graphene oxide modified with pta@ imidazolium based dicationic ionic liquid and fluorine atom", Composites Science and Technology,  Vol. 188, (2020), 107960, doi: 10.1016/j.compscitech.2019.107960
47.   Fan, Q., Zhang, L., Xing, H., Wang, H. and Ji, X., "Microwave absorption and infrared stealth performance of reduced graphene oxide-wrapped al flake", Journal of Materials Science: Materials in Electronics,  Vol. 31, No. 4, (2020), 3005-3016, doi: 10.1007/s10854-019-02844-2
48.   Ebrahimi-Tazangi, F., Hekmatara, S.H. and Seyed-Yazdi, J., "Synthesis and remarkable microwave absorption properties of amine-functionalized magnetite/graphene oxide nanocomposites", Journal of Alloys and Compounds,  Vol. 809, (2019), 151779, doi: 10.1016/j.jallcom.2019.151779