Effect of Critical Variables on Air Dense Medium Fluidized Bed Coal Drying Efficiency and Kinetics

Document Type : Original Article

Authors

Department of Mining Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

Calorific value, as a key component for fuel quality assessment, directly affects the thermal power plants' efficiency. While high-quality coal is consumed as metallurgical coal, low-rank coals are used by coal-fired power plants. The high moisture content of the thermal coals significantly influences their heating values. In this study, the drying performances of the fixed bed and air dense medium fluidized bed (ADMFB) dryers were investigated under the superficial air velocity of 15-18 cm/s, inlet air temperature of 55-75 ºC, and up to 80 minutes of operation. Low air consumption is an intrinsic characteristic for ADMFB, while a low-temperature range for drying air was selected to address the coal-fired power plants' waste heat. It was found that an increase in air velocity and temperature favored the drying efficiency of both systems (i.e., 18 cm/s and 75 ºC), with the temperature being more effective than the air velocity. The ADMFB dryer removed comparatively more moisture than the fixed bed for the shorter drying durations. For example, for 10% moisture reduction at 75 °C, the ADMFB dryer needed 5 minutes less time than the fixed bed. The fitting quality and goodness of serval well-known thin-layer models for describing fluidized bed and ADMFB coal drying kinetics were assessed by several models and statistical evaluators, respectively. It was found that the Middilli & Kucuk model best describes the fixed bed coal drying (i.e., R2=0.999, RSE=0.001, RMSE=0.008), while the Page model much properly simulates the ADMFB coal drying (i.e., R2=0.998, RSE=0.002, RMSE=0.009).

Keywords


1.     IEA. World energy balances: Overview (2019 edition). https://www.iea.org/reports/world-energy-balances-2019].
2.     Riley, J.T., "Routine coal and coke analysis: Collection, interpretation, and use of analytical data, 2nd edition, ASTM International Pennsylvania,  (2014). doi: 10.1520/MNL57-2ND-EB
3.     Berkowitz, N., "An introduction to coal technology, Elsevier,  (2012). doi: 10.1016/C2012-0-01440-8
4.     Osman, H., Jangam, S., Lease, J. and Mujumdar, A.S., "Drying of low-rank coal (lrc)—a review of recent patents and innovations", Drying Technology,  Vol. 29, No. 15, (2011), 1763-1783. doi: 10.1080/07373937.2011.616443
5.     Zhao, P., Zhao, Y., Luo, Z., Chen, Z., Duan, C. and Song, S., "Effect of operating conditions on drying of chinese lignite in a vibration fluidized bed", Fuel Processing Technology,  Vol. 128, (2014), 257-264. doi: 10.1016/j.fuproc.2014.07.014
6.     Khankari, G. and Karmakar, S., "Improvement of efficiency of coal-fired steam power plant by reducing heat rejection temperature at condenser using kalina cycle", International Journal of Engineering, Transactions A: Basics,  Vol. 31, No. 10, (2018), 1789-1795. doi: 10.5829/ije.2018.31.10a.23
7.     Shi, Y.C., Li, J., Li, X.Y., Wu, J., Wu, M.G., Li, S., Wang, H.Y., Zhao, G.J. and Yin, F.J., "Experimental study on super-heated steam drying of lignite", in Advanced Materials Research, Trans Tech Publications Ltd. Vol. 347, No., (2012), 3077-3082. doi: 10.4028/www.scientific.net/AMR.347-353.3077
8.     Ross, D., Doguparthy, S., Huynh, D. and McIntosh, M., "Pressurised flash drying of yallourn lignite", Fuel,  Vol. 84, No. 1, (2005), 47-52. doi: 10.1016/j.fuel.2004.08.006
9.     Tiara, T., Agustina, T. and Faizal, M., "The effect of air fuel ratio and temperature on syngas composition and calorific value produced from downdraft gasifier of rubber wood-coal mixture", International Journal of Engineering, TransactionsC:Aspects,  Vol. 31, No. 9, (2018), 1480-1486. doi: 10.5829/ije.2018.31.09c.02
10.   Bullinger, C., Ness, M. and Sarunac, N., "Coal creek prototype fluidized bed coal dryer: Performance improvement, emissions reduction, and operating experience", in 31st International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, Florida., (2006).
11.   Kakaras, E., Ahladas, P. and Syrmopoulos, S., "Computer simulation studies for the integration of an external dryer into a greek lignite-fired power plant", Fuel,  Vol. 81, No. 5, (2002), 583-593. doi: 10.1016/S0016-2361(01)00146-6
12.   Liu, M., Yan, J., Bai, B., Chong, D., Guo, X. and Xiao, F., "Theoretical study and case analysis for a predried lignite-fired power system", Drying Technology,  Vol. 29, No. 10, (2011), 1219-1229. doi: 10.1080/07373937.2011.582559
13.   Hu, S., Man, C., Gao, X., Zhang, J., Xu, X. and Che, D., "Energy analysis of low-rank coal pre-drying power generation systems", Drying Technology,  Vol. 31, No. 11, (2013), 1194-1205. doi: 10.1080/07373937.2013.775146
14.   Tahmasebi, A., Yu, J., Li, X. and Meesri, C., "Experimental study on microwave drying of chinese and indonesian low-rank coals", Fuel Processing Technology,  Vol. 92, No. 10, (2011), 1821-1829. doi: 10.1016/j.fuproc.2011.04.004
15.   Kannan, C.S., Thomas, P. and Varma, Y., "Drying of solids in fluidized beds", Industrial & engineering chemistry research,  Vol. 34, No. 9, (1995), 3068-3077. doi: 10.1021/ie00048a018
16.   Calban, T. and Ersahan, H., "Drying of a turkish lignite in a batch fluidized bed", Energy Sources,  Vol. 25, No. 12, (2003), 1129-1135. doi: 10.1080/00908310390233568
17.   Jeon, D., Kang, T., Kim, H., Lee, S. and Kim, S., "Investigation of drying characteristics of low rank coal of bubbling fluidization through experiment using lab scale", Science China Technological Sciences,  Vol. 54, No. 7, (2011), 1680-1683. doi: 10.1007/s11431-011-4414-0
18.   Kanda, H. and Makino, H., "Energy-efficient coal dewatering using liquefied dimethyl ether", Fuel,  Vol. 89, No. 8, (2010), 2104-2109. doi: 10.1016/j.fuel.2010.02.019
19.   Pusat, S., Akkoyunlu, M.T. and Erdem, H.H., "Fragmentation of a turkish low rank coal during fixed-bed evaporative drying process", International Journal of Coal Preparation and Utilization, (2018), 1-9. doi: 10.1080/19392699.2018.1451847
20.   Si, C., Wu, J., Wang, Y., Zhang, Y. and Shang, X., "Drying of low-rank coals: A review of fluidized bed technologies", Drying Technology,  Vol. 33, No. 3, (2015), 277-287. doi: 10.1080/07373937.2014.952382
21.   Jangam, S.V., Karthikeyan, M. and Mujumdar, A., "A critical assessment of industrial coal drying technologies: Role of energy, emissions, risk and sustainability", Drying Technology,  Vol. 29, No. 4, (2011), 395-407. doi: 10.1080/07373937.2010.498070
22.   Arima, K., Tsuchiyama, Y., Sawatsubashi, T., Kinoshita, M. and Ishii, H., "Drying of wet brown coal particles by a steam-fluidized bed dryer", Drying Technology,  Vol. 36, No. 6, (2018), 664-672. doi: 10.1080/07373937.2017.1323337
23.   Rhodes, M.J., "Introduction to particle technology, John Wiley & Sons,  (2008). doi: 10.1002/9780470727102
24.   Pusat, S., Akkoyunlu, M.T., Erdem, H.H. and Dağdaş, A., "Drying kinetics of coarse lignite particles in a fixed bed", Fuel Processing Technology,  Vol. 130, (2015), 208-213. doi: 10.1016/j.fuproc.2014.10.023
25.   Pawlak-Kruczek, H., Plutecki, Z. and Michalski, M., "Brown coal drying in a fluidized bed applying a low-temperature gaseous medium", Drying Technology,  Vol. 32, No. 11, (2014), 1334-1342. doi: 10.1080/07373937.2014.909845
26.   Park, J.H., Lee, C.-H., Park, Y.C., Shun, D., Bae, D.-H. and Park, J., "Drying efficiency of indonesian lignite in a batch-circulating fluidized bed dryer", Drying Technology,  Vol. 32, No. 3, (2014), 268-278. doi: 10.1080/07373937.2013.822385
27.   Tahmasebi, A., Yu, J., Han, Y. and Li, X., "A study of chemical structure changes of chinese lignite during fluidized-bed drying in nitrogen and air", Fuel Processing Technology,  Vol. 101, (2012), 85-93. doi: 10.1016/j.fuproc.2012.04.005
28.   Kim, H.-S., Matsushita, Y., Oomori, M., Harada, T., Miyawaki, J., Yoon, S.-H. and Mochida, I., "Fluidized bed drying of loy yang brown coal with variation of temperature, relative humidity, fluidization velocity and formulation of its drying rate", Fuel,  Vol. 105, (2013), 415-424. doi: 10.1016/j.fuel.2012.09.057
29.   Tahmasebi, A., Yu, J. and Bhattacharya, S., "Chemical structure changes accompanying fluidized-bed drying of victorian brown coals in superheated steam, nitrogen, and hot air", Energy & Fuels,  Vol. 27, No. 1, (2012), 154-166. doi: 10.1021/ef3016443
30.   Stokie, D., Woo, M.W. and Bhattacharya, S., "Attrition of victorian brown coal during drying in a fluidized bed", Drying Technology,  Vol. 34, No. 7, (2016), 793-801. doi: 10.1080/07373937.2015.1080723
31.   Argimbaev, K.R. and Drebenstedt, C., "Korkinsk brown coal open pit as a case study of endogenous fires", International Journal of Engineering,TransactionsA: Basics,  Vol. 34, No. 1, (2021), 293-304. doi: 10.5829/ije.2021.34.01a.32
32.   Dwari, R. and Rao, K.H., "Dry beneficiation of coal—a review", Mineral Processing and Extractive Metallurgy Review,  Vol. 28, No. 3, (2007), 177-234. doi: 10.1080/08827500601141271
33.   Azimi, E., Karimipour, S., Xu, Z., Szymanski, J. and Gupta, R., "Statistical analysis of coal beneficiation performance in a continuous air dense medium fluidized bed separator", International Journal of Coal Preparation and Utilization,  Vol. 37, No. 1, (2017), 12-32. doi: 10.1080/19392699.2015.1123155
34.   Ram, M. and Kumar, A., "Reliability measures improvement and sensitivity analysis of a coal handling unit for thermal power plant", International Journal of Engineering,  Vol. 26, No. 9, (2013), 1059-1066. doi: 10.5829/idosi.ije.2013.26.09c.11
35.   Sahu, A., Tripathy, A., Biswal, S. and Parida, A., "Stability study of an air dense medium fluidized bed separator for beneficiation of high-ash indian coal", International Journal of Coal Preparation and Utilization,  Vol. 31, No. 3-4, (2011), 127-148. doi: 10.1080/19392699.2011.574936
36.   He, Y., Zhao, Y. and Chen, Q., "Fine particle behavior in air fluidized bed dense medium dry separator", Coal Preparation,  Vol. 23, No. 1-2, (2003), 33-45. doi: 10.1080/07349340302268
37.   Dave, P.C., "Dry cleaning of coal by a laboratory continuous air dense medium fluidised bed separator",  (2012). doi: 10.7939/R3K339
38.   Geldart, D., "Types of gas fluidization", Powder Technology,  Vol. 7, No. 5, (1973), 285-292. doi: 10.1016/0032-5910(73)80037-3
39.   O’callaghan, J., Menzies, D. and Bailey, P., "Digital simulation of agricultural drier performance", Journal of Agricultural Engineering Research,  Vol. 16, No. 3, (1971), 223-244. doi: 10.1016/S0021-8634(71)80016-1
40.   Midilli, A., Kucuk, H. and Yapar, Z., "A new model for single-layer drying", Drying Technology,  Vol. 20, No. 7, (2002), 1503-1513. doi: 10.1081/DRT-120005864
41.   Diamante, L.M. and Munro, P.A., "Mathematical modelling of the thin layer solar drying of sweet potato slices", Solar energy,  Vol. 51, No. 4, (1993), 271-276. doi: 10.1016/0038-092X(93)90122-5
42.   Chhinnan, M.S., "Evaluation of selected mathematical models for describing thin-layer drying of in-shell pecans", Transactions of the ASAE,  Vol. 27, No. 2, (1984), 610-0615. doi: 10.13031/2013.32837
43.   Chandra, P.K. and Singh, R.P., "Applied numerical methods for food and agricultural engineers", (1994). doi: 10.1201/9781315137650
44.   Wang, C. and Singh, R., A single layer drying equation for rough rice. 1978, ASAE paper. doi: 10.12691/ajfst-4-4-5
45.   Coulson, J.M., Richardson, J.F., Backhurst, J.R. and Harker, J.H., "Particle technology and separation processes, Pergamon Press,  Vol. 2,  (1991). doi: 10.1016/C2009-0-25733-3
46.   Zhang, K. and You, C., "Experimental and modeling investigation of lignite drying in a fluidized bed dryer", in Proceedings of the 20th international conference on fluidized bed combustion, Springer. (2009), 361-366. doi: 10.1007/978-3-642-02682-9_53