Finite Element Simulation and Experimental Test of Ovine Corneal Tissue Cutting Process in Cataract Surgery Operation

Document Type : Special Issue for ETECH 2020

Authors

1 Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

2 Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran

3 Department of Ophthalmology, Tehran University of Medical Sciences, Tehran, Iran

Abstract

The modeling of corneal tissue cutting is essential in developing haptic training simulators and robot-assisted surgeries. A finite element model was developed for the ovine corneal cutting process and validated with an experimental setup for the first time. The experimental setup measured force in pre-cutting, cutting, and relaxation phases. The mechanical behavior of corneal incision was modeled by the finite element method. A test setup was built to conduct experiments on 32 fresh and well-preserved ovine cornea. Force was recorded with the sampling rate of 200 Hz. The tests were performed for intraocular pressures from 15 mm-Hg to 18 mm-Hg, and keratome velocities of 1 mm/s and 2 mm/s. The finite element model characterized the nonlinear behavior of the ovine corneal tissue. In the pre-cutting phase, force increased until the instrument tip penetrated. A 12.3% (2 mm/s) and 19.1% (1 mm/s) reduction in force indicated the onset of the cutting phase after which force remained constant. At the relaxation phase, force returned to zero. The cutting force values varied by pressure between 0.183N and 0.287 N for 1 mm/s and between 0.211 N and 0.281 N for 2 mm/s of keratome velocity, respectively. The finite element simulations show that the maximum force errors predicted by the model is 0.042 N for 2 mm/s of keratome velocity. The root mean square of force error between the finite element simulations and the experiments is 0.025 N.

Keywords


1.     Dhatt, G., Touzot, G. and Lefrançois, E., "Finite element method, Numerical methods series, London Hoboken, N.J., ISTE; Wiley,  (2012),  600 p.
2.     Pandolfi, A., Fotia, G. and Manganiello, F., "Finite element simulations of laser refractive corneal surgery", Engineering with Computers,  Vol. 25, No. 1, (2008), 15-24. DOI: 10.1007/s00366-008-0102-5.
3.     Lehtikangas, O., Tarvainen, T., Kim, A.D. and Arridge, S.R., "Finite element approximation of the radiative transport equation in a medium with piece-wise constant refractive index", Journal of Computational Physics,  Vol. 282, No., (2015), 345-359. DOI: 10.1016/j.jcp.2014.11.025.
4.     Sanchez, P., Moutsouris, K. and Pandolfi, A., "Biomechanical and optical behavior of human corneas before and after photorefractive keratectomy", Journal of Cataract & Refract Surgery,  Vol. 40, No. 6, (2014), 905-917. DOI: 10.1016/j.jcrs.2014.03.020.
5.     Alastrue, V., Calvo, B., Pena, E. and Doblare, M., "Biomechanical modeling of refractive corneal surgery", Journal of Biomechanical Engineering,  Vol. 128, No. 1, (2006), 150-160. DOI: 10.1115/1.2132368.
6.     Jessica R. Crouch, J.C.M., Earl R. Crouch III, "Finite element model of cornea deformation", in Medical Image Computing and Computer-Assisted Intervention - MICCAI. Vol., No. Issue, (2005 of Conference), 591-598.
7.     Sinha Roy, A. and Dupps, W.J., Jr., "Effects of altered corneal stiffness on native and postoperative lasik corneal biomechanical behavior: A whole-eye finite element analysis", Journal of Refractive Surgery,  Vol. 25, No. 10, (2009), 875-887. DOI: 10.3928/1081597X-20090917-09.
8.     Genest, R., "Finite element model of the chick eye to study myopia", Journal of Medical and Biological Engineering,  Vol. 33, No. 2, (2013). DOI: 10.5405/jmbe.1057.
9.     Seven, I., Lloyd, J.S. and Dupps, W.J., "Differences in simulated refractive outcomes of photorefractive keratectomy (prk) and laser in-situ keratomileusis (lasik) for myopia in same-eye virtual trials", International Journal of Environmental Research and Public Health,  Vol. 17, No. 1, (2019). DOI: 10.3390/ijerph17010287.
10.   Studer, H.P., Riedwyl, H., Amstutz, C.A., Hanson, J.V. and Buchler, P., "Patient-specific finite-element simulation of the human cornea: A clinical validation study on cataract surgery", Journal of Biomechanics,  Vol. 46, No. 4, (2013), 751-758. DOI: 10.1016/j.jbiomech.2012.11.018.
11.   Cristobal, J.A., del Buey, M.A., Ascaso, F.J., Lanchares, E., Calvo, B. and Doblare, M., "Effect of limbal relaxing incisions during phacoemulsification surgery based on nomogram review and numerical simulation", Cornea,  Vol. 28, No. 9, (2009), 1042-1049. DOI: 10.1097/ICO.0b013e3181a27387.
12.   Lapid-Gortzak, R., van der Linden, J.W., van der Meulen, I.J. and Nieuwendaal, C.P., "Advanced personalized nomogram for myopic laser surgery: First 100 eyes", Journal of Cataract & Refractive Surgery,  Vol. 34, No. 11, (2008), 1881-1885. DOI: 10.1016/j.jcrs.2008.06.041.
13.   Sinha Roy, A., Dupps, W.J., Jr. and Roberts, C.J., "Comparison of biomechanical effects of small-incision lenticule extraction and laser in situ keratomileusis: Finite-element analysis", Journal of Cataract & Refract Surgery,  Vol. 40, No. 6, (2014), 971-980. DOI: 10.1016/j.jcrs.2013.08.065.
14.   Lanchares, E., Calvo, B., Cristobal, J.A. and Doblare, M., "Finite element simulation of arcuates for astigmatism correction", Journal of Biomechanics,  Vol. 41, No. 4, (2008), 797-805. DOI: 10.1016/j.jbiomech.2007.11.010.
15.   Besdo, S., Wiegand, J., Hahn, J., Ripken, T., Krüger, A., Fromm, M. and Lubatschowski, H., "Finite element study of the accommodation behaviour of the crystalline lens after fs-laser treatment", Biomedical Engineering / Biomedizinische Technik,  Vol., No., (2013). DOI: 10.1515/bmt-2013-4337.
16.   R. B, B., Prabhu, G., S. Ve, R., Poojary, R. and Sundaram, S.M., "Investigation of deformation of the cornea during tonometry using fem", International Journal of Electrical and Computer Engineering, Vol. 10, No. 6, (2020). DOI: 10.11591/ijece.v10i6.pp5631-5641.
17.   Weaver, A.A., Kennedy, E.A., Duma, S.M. and Stitzel, J.D., "Evaluation of different projectiles in matched experimental eye impact simulations", Journal of Biomechanical Engineering,  Vol. 133, No. 3, (2011), 031002. DOI: 10.1115/1.4003328.
18.   Gray, W., Sponsel, W.E., Scribbick, F.W., Stern, A.R., Weiss, C.E., Groth, S.L. and Walker, J.D., "Numerical modeling of paintball impact ocular trauma: Identification of progressive injury mechanisms", Investigative Ophthalmology & Visual Science,  Vol. 52, No. 10, (2011), 7506-7513. DOI: 10.1167/iovs.11-7942.
19.   Koberda, M., Skorek, A., Kłosowski, P., Żmuda-Trzebiatowski, M., Żerdzicki, K., Lemski, P. and Stodolska-Koberda, U., "Extended numerical analysis of an eyeball injury under direct impact",  Vol., No., (2021). DOI: 10.1101/2021.02.26.433021.
20.   Uchio, E., Ohno, S., Kudoh, K., Kadonosono, K., Andoh, K. and Kisielewicz, L.T., "Simulation of air-bag impact on post-radial keratotomy eye using finite element analysis", Journal of Cataract & Refractive Surgery,  Vol. 27, No. 11, (2001), 1847-1853. DOI: 10.1016/s0886-3350(01)00966-x.
21.   Uchio, E., Kadonosono, K., Matsuoka, Y. and Goto, S., "Simulation of air-bag impact on an eye with transsclerally fixated posterior chamber intraocular lens using finite element analysis", Journal of Cataract & Refractive Surgery,  Vol. 30, No. 2, (2004), 483-490. DOI: 10.1016/S0886-3350(03)00520-0.
22.   S.P. DiMaio, S.E.S., "Needle insertion modeling and simulation", IEEE Transactions on Robotics and Automation,  Vol. 19, No. 5, (2003), 864 - 875. DOI: 10.1109/Tra.2003.817044.
23.   Moustris, G.P., Hiridis, S.C., Deliparaschos, K.M. and Konstantinidis, K.M., "Evolution of autonomous and semi-autonomous robotic surgical systems: A review of the literature", The International Journal of Medical Robotics,  Vol. 7, No. 4, (2011), 375-392. DOI: 10.1002/rcs.408.
24.   Misra, S., Reed, K.B., Douglas, A.S., Ramesh, K.T. and Okamura, A.M., "Needle-tissue interaction forces for bevel-tip steerable needles", Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron,  (2008), 224-231. DOI: 10.1109/BIOROB.2008.4762872.
25.   Oldfield, M., Dini, D., Giordano, G. and Rodriguez, Y.B.F., "Detailed finite element modelling of deep needle insertions into a soft tissue phantom using a cohesive approach", Comput Methods Biomech Biomed Engin,  Vol. 16, No. 5, (2013), 530-543. DOI: 10.1080/10255842.2011.628448.
26.   Kong, X.Q., Zhou, P. and Wu, C.W., "Numerical simulation of microneedles' insertion into skin", Computer Methods in Biomechanics and Biomedical Engineering,  Vol. 14, No. 9, (2011), 827-835. DOI: 10.1080/10255842.2010.497144.
27.   Assaad, W., Jahya, A., Moreira, P. and Misra, S., "Finite-element modeling of a bevel-tipped needle interacting with gel", Journal of Mechanics in Medicine and Biology,  Vol. 15, No. 05, (2015). DOI: 10.1142/s0219519415500797.
28.   Podder, T.K., Sherman, J., Messing, E.M., Rubens, D.J., Fuller, D., Strang, J.G., Brasacchio, R.A. and Yu, Y., "Needle insertion force estimation model using procedure-specific and patient-specific criteria", Conference proceedings - IEEE engineering in medicine and biology society,  Vol. 2006, No., (2006), 555-558. DOI: 10.1109/IEMBS.2006.259921.
29.   Asadian, A., Kermani, M.R. and Patel, R.V., "A novel force modeling scheme for needle insertion using multiple kalman filters", IEEE Transactions on Instrumentation and Measurement,  Vol. 61, No. 2, (2012), 429-438. DOI: 10.1109/tim.2011.2169178.
30.   van Veen, Y.R., Jahya, A. and Misra, S., "Macroscopic and microscopic observations of needle insertion into gels", Proceedings of the Institution of Mechanical Engineers, Part H,  Vol. 226, No. 6, (2012), 441-449. DOI: 10.1177/0954411912443207.
31.   Jushiddi, M.G., Cahalane, R.M., Byrne, M., Mani, A., Silien, C., Tofail, S.A.M., Mulvihill, J.J.E. and Tiernan, P., "Bevel angle study of flexible hollow needle insertion into biological mimetic soft-gel: Simulation and experimental validation", Journal of the Mechanical Behavior of Biomedical Materials,  Vol. 111, No., (2020), 103896. DOI: 10.1016/j.jmbbm.2020.103896.
32.   Yamaguchi, S., Tsutsui, K., Satake, K., Morikawa, S., Shirai, Y. and Tanaka, H.T., "Dynamic analysis of a needle insertion for soft materials: Arbitrary lagrangian-eulerian-based three-dimensional finite element analysis", Computers in Biology and Medicine,  Vol. 53, (2014), 42-47. DOI: 10.1016/j.compbiomed.2014.07.012.
33.   Mahvash, M. and Dupont, P.E., "Mechanics of dynamic needle insertion into a biological material", IEEE Transactions on Biomedical Engineering,  Vol. 57, No. 4, (2010), 934-943. DOI: 10.1109/TBME.2009.2036856.
34.   Elsheikh, A., Kassem, W. and Jones, S.W., "Strain-rate sensitivity of porcine and ovine corneas", Acta of Bioengineering And Biomechanics,  Vol. 13, No. 2, (2011), 25-36.
35.   Mohammadi, S.F., Mazouri, A., Jabbarvand, M., Rahman, A.N. and Mohammadi, A., "Sheep practice eye for ophthalmic surgery training in skills laboratory", Journal of Cataract & Refractive Surgery,  Vol. 37, No. 6, (2011), 987-991. DOI: 10.1016/j.jcrs.2011.03.030.
36.   Mohammadi, S.F., Mazouri, A., Rahman, A.N., Jabbarvand, M. and Peyman, G.A., "Globe-fixation system for animal eye practice", Journal of Cataract & Refractive Surgery,  Vol. 37, No. 1, (2011), 4-7. DOI: 10.1016/j.jcrs.2010.10.026.
37.   Sinha Roy, A. and Dupps, W.J., Jr., "Patient-specific modeling of corneal refractive surgery outcomes and inverse estimation of elastic property changes", Journal of Biomechanical Engineering,  Vol. 133, No. 1, (2011), 011002. DOI: 10.1115/1.4002934.