Numerical Investigation of Response of the Post-Tensioned Tapered Steel Beams with Shape Memory Alloy Tendons

Document Type : Original Article

Authors

1 Department of Civil Engineering, Maragheh Branch, Islamic Azad University, Maragheh, Iran

2 Civil Engineering Faculty, University of Tabriz, Tabriz, Iran

Abstract

The external post-tension technique is one of the best strengthening methods for reinforcement and improvement of the various steel structures and substructure components such as beams. In the present work, the load carrying capacity of the post-tensioned tapered steel beams with external shape memory alloy (SMA) tendons are studied. 3D nonlinear finite element method with ABAQUS software is used to determine the effects of the increase in the flexural strength, and the improvement of the load carrying capacity. The effect of the different parameters, such as geometrical characteristics and the post-tension force applied to the tendons are also studied in this research. The results reveal that the external post-tension with SMA tendons in comparison with the steel tendons causes a significant improvement of the loading capacity. According to this, using SMA tendon for the reinforcement of the tapered beams causes a decrease in weight of these structures and as a consequence causes economic benefits for their application. This method can be used extensively for steel beams due to low executive costs and simplicity of the operation for post-tension.

Keywords


  1. Islam, M., Rubieyat B.A., and Moushtakim B., "Strengthening Techniques of Steel Structure: An Overview", World Scientific News, Vol. 118, (2019), 181-193.
  2. Farhadi, N., Saffari, H., Torkzadeh, P., “Evaluation of Seismic Behavior of Steel Moment Resisting Frames Considering Nonlinear Soil-structure Interaction”, International Journal of Engineering, Transactions A: Basics, Vol. 31, No. 7, (2018), page no. 1020-1027. DOI: 10.5829/ije.2018.32.07a.03
  3. Barkhordari, M.S., Tehranizadeh, M., “Ranking Passive Seismic Control Systems by Their Effectiveness in Reducing Responses of High-Rise Buildings with Concrete Shear Walls Using Multiple-Criteria Decision Making”, International Journal of Engineering, Transactions B: Applications, Vol. 33, No. 8, (2020), 1479-1490. DOI: 10.5829/ije.2020.33.08b.06
  4. Yangzhi, R., Wang, Y., Wang, B., Ban, H., Song, J., Su, G., "Flexural behavior of steel deep beams prestressed with externally unbonded straight multi-tendons", Thin-Walled Structures, Vol. 131, (2018), 519-530. DOI: 10.1016/j.tws.2018.07.022
  5. Maleki, F.K., and Toygar, M.E., "The fracture behavior of sandwich composites with different core densities and thickness subjected to mode I loading at different temperatures", Materials Research Express, Vol. 6, No. 4, (2019), 045314. DOI: 10.1088/2053-1591/aafc02
  6. Huawen, Y., Cuijuan, L., Shiling, P., Tomas, U., Haobo, Q., "Fatigue performance analysis of damaged steel beams strengthened with prestressed unbonded CFRP plates", Journal of Bridge Engineering, Vol. 23, No. 7, (2018), 04018040. DOI: 10.1061/(ASCE)BE.1943-5592.0001251
  7. Kambal, M., and Jia, Y., "Theoretical and experimental study on flexural behavior of prestressed steel plate girders", Journal of Constructional Steel Research, Vol. 142, (2018), 5-16. DOI: 10.1016/j.jcsr.2017.12.007
  8. Ayyub, B.M., Sohn, Y.G., and Saadatmanesh, H., "Prestressed composite girders under positive moment", Journal of Structural Engineering, Vol. 116. No. 11, (1990), 2931-2951. DOI: 10.1061/(ASCE)0733-9445(1990)116:11(2931)
  9. Imran, M., Mahendran, M., and Keerthan, P., "Experimental and numerical investigations of CFRP strengthened short SHS steel columns", Engineering Structures, Vol. 175, (2018), 879-894. DOI: 10.1016/j.engstruct.2018.08.042
  10. Izadi, M.R., Ghafoori, E., Shahverdi M., Motavalli, M., Maalek, S., "Development of an iron-based shape memory alloy (Fe-SMA) strengthening system for steel plates", Engineering Structures, Vol. 174, (2018), 433-446. DOI: 10.1016/j.engstruct.2018.07.073
  11. Kazem, H., Zhang, Y., Rizkalla, S., Seracino, R., Kobayashi, A., "CFRP shear strengthening system for steel bridge girders", Engineering Structures, Vol. 175, (2018), 415-424. DOI: 10.1016/j.engstruct.2018.08.038
  12. Haskett, M., Oehlers, D.J., and Mohamed Ali, M.S., "Local and global bond characteristics of steel reinforcing bars", Engineering Structures, Vol. 30, No. 2, (2008), 376-383. DOI: 10.1016/j.engstruct.2007.04.007
  13. Franco, N., Biscaia, H., and Chastre, C., "Experimental and numerical analyses of flexurally-strengthened concrete T-beams with stainless steel", Engineering Structures, Vol. 172, (2018), 981-996. DOI: 10.1016/j.engstruct.2018.06.077
  14. Özbek, E., Aykaç, B., and Aykaç, S., "The effects of brick walls strengthened with perforated steel plates on frame behavior", Engineering Structures, Vol. 189, (2019), 62-76. DOI: 10.1016/j.engstruct.2019.03.080
  15. Chataigner, S., Benzarti, K., Foret, G., Caron, J.F., Gemighani, G., Brugiolo, M., Calderon, I., Pinero, I., Birtel, V., Lehmann, F., "Design and testing of an adhesively bonded CFRP strengthening system for steel structures", Engineering Structures, Vol. 177, (2018), 556-565. DOI: 10.1016/j.engstruct.2018.10.004
  16. Hosseini, A., Ghafoori, E., Motavalli, M., Nussbaumer, A., Zhao, X.L., Al-Mahaidi, R., Terraso, G., "Development of prestressed unbonded and bonded CFRP strengthening solutions for tensile metallic members", Engineering Structures, Vol. 181, (2019), 550-561. DOI: 10.1016/j.engstruct.2018.12.020
  17. Hosseini, A., Michels, J., Izadi, M., Ghafoori, E., "A comparative study between Fe-SMA and CFRP reinforcements for prestressed strengthening of metallic structures", Construction and Building Materials, Vol. 226, (2019), 976-992. DOI: 10.1016/j.conbuildmat.2019.07.169
  18. Chataigner, S., Wahbeh, M., Garcia-Sanchez, D., Benzarti, K., "Fatigue Strengthening of Steel Bridges with Adhesively Bonded CFRP Laminates: Case Study", Journal of Composites for Construction, Vol. 24, No. 3, (2020), 05020002. DOI: 10.1061/(ASCE)CC.1943-5614.0001014
  19. Martinelli, E., Hosseini, A., Ghafoori, E., Motavalli, M., "Behavior of prestressed CFRP plates bonded to steel substrate: Numerical modeling and experimental validation", Composite Structures, Vol. 207, (2019), 974-984. DOI: 10.1016/j.compstruct.2018.09.023
  20. Maghsoudi, A., Askari Y., “Ultimate Unbonded Tendon Stress in CFRP Strengthened Post-Tensioned Indeterminate I-Beams Cast with HSCs”, International Journal of Engineering, Transactions C: Aspects, Vol. 28, No. 3, (2015), 350-359. DOI: 10.5829/idosi.ije.2015.28.03c.03
  21. Ozcatalbas, Y., and Ozer, A., "Investigation of fabrication and mechanical properties of internally prestressed steel I beam", Materials & Design, Vol. 28, No. 6, (2007), 1988-1993. DOI: 10.1016/j.matdes.2006.04.007
  22. Saadatmanesh, H., Albrecht, P. and Ayyub, B.M., "Experimental study of prestressed composite beams", Journal of Structural Engineering, Vol. 115, No. 9, (1989), 2348-2363. DOI: 10.1061/(ASCE)0733-9445(1989)115:9(2348)
  23. Belletti, B., and Gasperi, G., "Behavior of prestressed steel beams", Journal of Structural Engineering, Vol. 136.9, (2010), page no. 1131-1139. DOI: 10.1061/(ASCE)ST.1943-541X.0000208
  24. Pisani, M.A., "A numerical survey on the behaviour of beams pre-stressed with FRP cables", Construction and Building Materials, Vol. 12, No. 4, (1998), 221-232. DOI: 10.1016/S0950-0618(97)00081-0
  25. Ghannam, M., Mahmoud, N.S., Badr, A., Salem, F.A., "Effect of post tensioning on strengthening different types of steel frames", Journal of King Saud University-Engineering Sciences, Vol. 29.4, (2017), 329-338. DOI: 10.1016/j.jksues.2016.07.001
  26. Ghafoori, E., Hosseini, A. Al-Mahaidi, R., Zhao, X.L., Motavalli, M., "Prestressed CFRP-strengthening and long-term wireless monitoring of an old roadway metallic bridge", Engineering Structures, Vol. 176, (2018), 585-605. DOI: 10.1016/j.engstruct.2018.09.042
  27. Park, S., Kim, T., Kim, K., Hong, S.N., "Flexural behavior of steel I-beam prestressed with externally unbonded tendons", Journal of Constructional Steel Research, Vol. 66.1, (2010), 125-132. DOI: 10.1016/j.jcsr.2009.07.013
  28. Moradi, S., and Burton, H.V., "Response surface analysis and optimization of controlled rocking steel braced frames", Bulletin of Earthquake Engineering, Vol. 16, No. 10, (2018), 4861-4892. DOI: 10.1007/s10518-018-0373-1
  29. El-Zohairy, A., and Salim, H., "Parametric study for post-tensioned composite beams with external tendons", Advances in Structural Engineering, Vol. 20, No. 10, (2017), 1433-1450. DOI: 10.1177/1369433216684352
  30. Taoum, A., Jiao, H., and Holloway, D., "Upgrading steel I-beams using local post-tensioning", Journal of Constructional Steel Research, Vol. 113, (2015), 127-134. DOI: 10.1016/j.jcsr.2015.06.012
  31. Zhou, H., Hao, C., Zheng, Z., Wang, W., "Numerical Studies on Fire Resistance of Prestressed Continuous Steel–Concrete Composite Beams", Fire Technology, (2019), 1-19. DOI: 10.1007/s10694-019-00916-7
  32. Gruyter, D., "Stability analysis of FGM microgripper subjected to nonlinear electrostatic and temperature variation loadings", Science and Engineering of Composite Materials, Vol. 23, No. 2, (2016), 199-207. DOI: 10.1515/secm-2014-0079
  33. Maleki, V.A., and Mohammadi, N., "Buckling analysis of cracked functionally graded material column with piezoelectric patches", Smart Materials and Structures, Vol. 26, No. 3, (2017), 035031. DOI: 10.1088/1361-665X/aa5324
  34. Toygar, M.E., Tee, K.F., Maleki, F.K., Balaban, A.C., "Experimental, analytical and numerical study of mechanical properties and fracture energy for composite sandwich beams", Journal of Sandwich Structures & Materials, Vol. 21, No. 3, (2019), 1167-1189. DOI: 10.1177/1099636217710003
  35. Chong, K.P., and Garboczi, E.J., "Smart and designer structural material systems", Progress in Structural Engineering and Materials, Vol. 4, No. 4, (2002), 417-430. DOI: 10.1002/pse.134
  36. Song, G., Ma, N., and Li, H.N., "Applications of shape memory alloys in civil structures", Engineering Structures, Vol. 28, No. 9, (2006), 1266-1274. DOI: 10.1016/j.engstruct.2005.12.010
  37. Wang, W., Fang, C., Yang, X., Chen, Y., Ricles, J., Sause R., "Innovative use of a shape memory alloy ring spring system for self-centering connections", Engineering Structures, Vol. 153, (2017), 503-515. DOI: 10.1016/j.engstruct.2017.10.039
  38. Abouali, S., Shahverdi, M., Ghassemieh, M., Motavalli, M., "Nonlinear simulation of reinforced concrete beams retrofitted by near-surface mounted iron-based shape memory alloys", Engineering Structures, Vol. 187, (2019), 133-148. DOI: 10.1016/j.engstruct.2019.02.060
  39. Elbahy, Y.I., and Youssef, M.A., "Flexural behaviour of superelastic shape memory alloy reinforced concrete beams during loading and unloading stages", Engineering Structures, Vol. 181, (2019), 246-259. DOI: 10.1016/j.engstruct.2018.12.001
  40. Dehghani, A., and Aslani, F., "The effect of shape memory alloy, steel, and carbon fibres on fresh, mechanical, and electrical properties of cementitious composites", Cement and Concrete Composites, Vol. 112, (2020), 103659. DOI: 10.1016/j.cemconcomp.2020.103659
  41. Tamai, H., and Kitagawa, Y., "Pseudoelastic behavior of shape memory alloy wire and its application to seismic resistance member for building", Computational Materials Science, Vol. 25, No. 1-2, (2002), 218-227. DOI: 10.1016/S0927-0256(02)00266-5
  42. Li, H.N., Liu, M.M., and Fu, X., "An innovative re-centering SMA-lead damper and its application to steel frame structures", Smart Materials and Structures, Vol. 27, No. 7, (2018), 075029. DOI: 10.1088/1361-665X/aac28f
  43. Abou-Elfath, H., "Evaluating the ductility characteristics of self-centering buckling-restrained shape memory alloy braces", Smart Materials and Structures, Vol. 26.5, (2017), 055020. DOI: 10.1088/1361-665X/aa6abc
  44. Fang, C., Zheng, Y., Chen, J., Yam, M.C.H., Wang, W., "Superelastic NiTi SMA cables: Thermal-mechanical behavior, hysteretic modelling and seismic application", Engineering Structures, Vol. 183, (2019), 533-549. DOI: 10.1016/j.engstruct.2019.01.049
  45. Wang, B., Jiang, H., and Wang, J., "Numerical simulation and behavior insights of steel columns with SMA bolts towards earthquake resilience", Journal of Constructional Steel Research, Vol. 161, (2019), 285-295. DOI: 10.1016/j.jcsr.2019.07.011
  46. Varughese, K., and El-Hacha, R., "Design and behaviour of steel braced frame reinforced with NiTi SMA wires", Engineering Structures, Vol. 212, (2020), 110502. DOI: 10.1016/j.engstruct.2020.110502
  47. Xu, X., Tu, J., Cheng, G., Zheng, J., Luo, Y., "Experimental study on self-centering link beams using post-tensioned steel-SMA composite tendons", Journal of Constructional Steel Research, Vol. 155, (2019), 121-128. DOI: 10.1016/j.jcsr.2018.12.026
  48. Xu, X., Zhang, Y., and Luo, Y., "Self-centering modularized link beams with post-tensioned shape memory alloy rods", Engineering Structures, Vol. 112, (2016), 47-59. DOI: 10.1016/j.engstruct.2016.01.006
  49. Xu, X., Zheng, Y., and Luo, Y., "Self-centering links using post-tensioned composite tendons", Advances in Structural Engineering, Vol. 21.9, (2018), 1302-1312. DOI: 10.1177/1369433217742523
  50. Varughese, K.A., “Performance of Steel Braced Frame Reinforced with Shape Memory Alloy Wires”. MS thesis. Schulich School of Engineering, 2019.
  51. Chowdhury, M.A., Rahmzadeh, A., and Shahria Alam, M., "Improving the seismic performance of post-tensioned self-centering connections using SMA angles or end plates with SMA bolts", Smart Materials and Structures, Vol. 28.7, (2019), 075044. DOI: 10.1088/1361-665X/ab1ce6
  52. Hosseini, A., Ghafoori, E., Al-Mahaidi, R., Zhao, X.L., Motavalli, M., "Strengthening of a 19th-century roadway metallic bridge using nonprestressed bonded and prestressed unbonded CFRP plates", Construction and Building Materials, Vol. 209, (2019), 240-259. DOI: 10.1016/j.conbuildmat.2019.03.095
  53. Izadi, M., Ghafoori, E., Hosseini, A., Motavalli, M., "Development of anchorage systems for strengthening of steel plates with iron-based shape memory alloy strips", Fourth Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2017). No. CONF. 2017.
  54. Aizawa, S., Kakizawa, T., and Higasino, M., "Case studies of smart materials for civil structures", Smart Materials and Structures, Vol. 7, No. 5, (1998), 617. DOI: 10.1088/0964-1726/7/5/006
  55. Duarte, A.P.C., Silva, B.A., Silvestre, N., Brito, J., Julio, E., Castro, J.M., "Tests and design of short steel tubes filled with rubberised concrete", Engineering Structures, Vol. 112, (2016), page no. 274-286.DOI: 10.1016/j.engstruct.2016.01.018
  56. Tao, Z., Uy, B., Liao, F.Y., Han, L.H., "Nonlinear analysis of concrete-filled square stainless steel stub columns under axial compression", Journal of Constructional Steel Research, Vol. 67.11, (2011), 1719-1732. DOI: 10.1016/j.jcsr.2011.04.012
  57. Eshghinejad, Ahmadreza. Finite element study of a shape memory alloy bone implant. Ph.D. Diss. University of Toledo, 2012.
  58. Sayyaadi, H., Zakerzadeh, M.R., and Salehi, H., "A comparative analysis of some one-dimensional shape memory alloy constitutive models based on experimental tests", Scientia Iranica, Vol. 19.2, (2012), 249-257. DOI: 10.1016/j.scient.2012.01.005
  59. Zhou, B., Yoon, S.H., and Leng, J.S., "A three-dimensional constitutive model for shape memory alloy", Smart Materials and Structures, Vol. 18.9, (2009), 095016. DOI: 10.1088/0964-1726/18/9/095016
  60. Fugazza, D., "Experimental investigation on the cyclic properties of superelastic NiTi shape-memory alloy wires and bars", Individual study, European School for Advanced Studies in Reduction of Seismic Risk ROSE School, Pavia, Italy (2005).