A Hybrid Modified Grasshopper Optimization Algorithm and Genetic Algorithm to Detect and Prevent DDoS Attacks

Document Type : Original Article


Department of Industrial Engineering, K.N. Toosi University of Technology, Tehran, Iran


Cybersecurity has turned into a brutal and vicious environment due to the expansion of cyber-threats and cyberbullying. Distributed Denial of Service (DDoS) is a network menace that compromises victims’ resources promptly. Considering the significant role of optimization algorithms in the highly accurate and adaptive detection of network attacks, the present study has proposed Hybrid Modified Grasshopper Optimization algorithm and Genetic Algorithm (HMGOGA) to detect and prevent DDoS attacks. HMGOGA overcomes conventional GOA drawbacks like low convergence speed and getting stuck in local optimum. In this paper, the proposed algorithm is used to detect DDoS attacks through the combined nonlinear regression (NR)-sigmoid model simulation. In order to serve this purpose, initially, the most important features in the network packages are extracted using the Random Forest (RF) method. By removing 55 irrelevant features out of a total of 77, the selected ones play a key role in the proposed model’s performance. To affirm the efficiency, the high correlation of the selected features was measured with Decision Tree (DT). Subsequently, the HMGOGA is trained with benchmark cost functions and another proposed cost function that enabling it to detect malicious traffic properly. The usability of the proposed model is evaluated by comparing with two benchmark functions (Sphere and Ackley function). The experimental results have proved that HMGOGA based on NR-sigmoid outperforms other implemented models and conventional GOA methods with 99.90% and 99.34% train and test accuracy, respectively.


1.     A. Saied, R. E. Overill, and T. J. N. Radzik, "Detection of known and unknown DDoS attacks using Artificial Neural Networks,", Neurocomputing Vol. 172, (2016), 385-393. https://doi.org/10.1016/j.neucom.2015.04.101
2.     O. Osanaiye, K.-K. R. Choo, M. J. J. o. N. Dlodlo, and C. Applications, "Distributed denial of service (DDoS) resilience in cloud: Review and conceptual cloud DDoS mitigation framework,"Journal of Network and Computer Applications Vol. 67, (2016), 147-165. https://doi.org/10.1016/j.jnca.2016.01.001
3.     C. Kolias, G. Kambourakis, A. Stavrou, and J. J. C. Voas, "DDoS in the IoT: Mirai and other botnets," Computer,  Vol. 50, No. 7, (2017), 80-84. DOI: 10.1109/MC.2017.201
4.     J. Wang, M. Yin, and J. J. T. C. S. Wu, "Two approximate algorithms for model counting,"Theoretical Computer ScienceVol. 657, (2017), 28-37. https://doi.org/10.1016/j.tcs.2016.04.047
5.     C. Wang, T. T. Miu, X. Luo, J. J. I. T. o. I. F. Wang, and Security, "SkyShield: a sketch-based defense system against application layer DDoS attacks,"IEEE Transactions on Information Forensics and Security, Vol. 13, No. 3, (2017),  559-573. DOI: 10.1109/TIFS.2017.2758754
6.     Gharvirian, Fateme, and Ali Bohloli. "Neural network based protection of software defined network controller against distributed denial of service attacks." International Journal of Engineering, Transactions B: Applications Vol. 30, No. 11 (2017), 1714-1722. DOI: 10.5829/ije.2017.30.11b.12
7.     A. R. a. Yusof, N. I. Udzir, and A. J. I. J. o. D. E. T. Selamat, "Systematic literature review and taxonomy for DDoS attack detection and prediction,", International Journal of Digital Enterprise Technology, Vol. 1, No. 3, (2019), 292-315. https://doi.org/10.1504/IJDET.2019.097849
8.     Ö. Cepheli, S. Büyükçorak, G. J. J. o. E. Karabulut Kurt, and C. Engineering, "Hybrid intrusion detection system for ddos attacks," Journal of Electrical and Computer Engineering  Vol. 2016, (2016). https://doi.org/10.1155/2016/1075648
9.     M. H. Bhuyan, D. Bhattacharyya, J. K. J. S. Kalita, and C. Networks, "E‐LDAT: a lightweight system for DDoS flooding attack detection and IP traceback using extended entropy metric," Security and Communication Networks Vol. 9, No. 16,(2016)  3251-3270. https://doi.org/10.1002/sec.1530
10.   Shamshirband, Shahab, Mahdis Fathi, Anthony T. Chronopoulos, Antonio Montieri, Fabio Palumbo, and Antonio Pescapè. "Computational intelligence intrusion detection techniques in mobile cloud computing environments: Review, taxonomy, and open research issues." Journal of Information Security and Applications Vol.55, (2020), 102582. https://doi.org/10.1016/j.jisa.2020.102582
11.   Beiki, H., S. M. Seyedhosseini, V. R. Ghezavati, and S. M. Seyedaliakbar. "Multi-objective Optimization of Multi-vehicle Relief Logistics Considering Satisfaction Levels under Uncertainty." International Journal of Engineering, Transactions B: Applications, Vol. 33, No. 5, (2020), 814-824. DOI: 10.5829/ije.2020.33.05b.13
12 .   Fathollahi-Fard, Amir Mohammad, Mostafa Hajiaghaei-Keshteli, and Reza Tavakkoli-Moghaddam. "Red deer algorithm (RDA): a new nature-inspired meta-heuristic." Soft Computing (2020), 1-29. https://doi.org/10.1007/s00500-020-04812-z
13.   Hajiaghaei-Keshteli, Mostafa, Ahmad J Afshari, and Elahe Nasiri. "Addressing the freight consolidation and containerization problem by recent and hybridized meta-heuristic algorithms." International Journal of Engineering, Transactions C: Aspects, Vol. 30, No. 3, (2017), 403-410.
 DOI: 10.5829/idosi.ije.2017.30.03c.10
14.   Fathollahi-Fard, Amir Mohammad, Mostafa Hajiaghaei-Keshteli, and Seyedali Mirjalili. "A set of efficient heuristics for a home healthcare problem." Neural Computing and Applications, Vol. 32, No. 10, (2020), 6185-6205. https://doi.org/10.1007/s00521-019-04126-8
15.   I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, "A Detailed Analysis of the CICIDS2017 Data Set," in International Conference on Information Systems Security and Privacy, 2018,  172-188: Springer. https://doi.org/10.1007/978-3-030-25109-3_9
16.   Y. Gu, K. Li, Z. Guo, and Y. J. I. A. Wang, "Semi-Supervised K-Means DDoS Detection Method Using Hybrid Feature Selection Algorithm,"IEEE AccessVol. 7, (2019), 64351-64365. DOI: 10.1109/ACCESS.2019.2917532
17.   Ghasemi, J., and J. Esmaily. "A novel intrusion detection systems based on genetic algorithms-suggested features by the means of different permutations of labels’ orders." International Journal of Engineering, Transactions A: Basics, Vol. 30, No. 10, (2017), 1494-1502. DOI: 10.5829/ije.2017.30.10a.10
18.   S. M. T. Nezhad, M. Nazari, and E. A. J. I. C. L. Gharavol, "A novel DoS and DDoS attacks detection algorithm using ARIMA time series model and chaotic system in computer networks,"IEEE Communications Letters, Vol. 20, No. 4,(2016), 700-703. DOI: 10.1109/LCOMM.2016.2517622
19.   X. Chen, S. J. I. T. o. I. Yu, and Systems, "A collaborative intrusion detection system against DDoS for SDN," IEICE Transactions on Information and Systems,Vol. 99, No. 9,  2395-2399, 2016. DOI: 10.1587/transinf.2016EDL8016
20.   Singh, Maninder Pal, and Abhinav Bhandari. "New-flow based DDoS attacks in SDN: Taxonomy, rationales, and research challenges." Computer Communications, (2020). https://doi.org/10.1016/j.comcom.2020.02.085
21.   Q. Niyaz, W. Sun, and A. Y. J. a. p. a. Javaid, "A deep learning based DDoS detection system in software-defined networking (SDN),"arXiv preprint arXiv:1611.07400  2016. DOI: 10.4108/eai.28-12-2017.153515
22.   D. Arivudainambi, V. K. KA, S. S. J. N. C. Chakkaravarthy, and Applications, "LION IDS: A meta-heuristics approach to detect DDoS attacks against Software-Defined Networks,"Neural Computing and ApplicationsVol. 31, No. 5, (2019), 1491-1501. https://doi.org/10.1007/s00521-018-3383-7
23.   M. Yazdani, F. J. J. o. c. d. Jolai, and engineering, "Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm," Journal of Computational Design and Engineering, Vol. 3, No. 1, (2016), 24-36. https://doi.org/10.1016/j.jcde.2015.06.003
24.   I. Sreeram, V. P. K. J. A. c. Vuppala, and informatics, "HTTP flood attack detection in application layer using machine learning metrics and bio inspired bat algorithm," Applied Computing and Informatics, Vol. 15, No. 1 (2019): 59-66.https://doi.org/10.1016/j.aci.2017.10.003
25.   N. Dayal, P. Maity, S. Srivastava, R. J. S. Khondoker, and C. Networks, "Research trends in security and DDoS in SDN," Security and Communication Networks, Vol. 9, No. 18, (2016),  6386-6411. https://doi.org/10.1002/sec.1759
 26.  Bala, Ritu, and Ritu Nagpal. "A REVIEW ON KDD CUP99 AND NSL-KDD DATASET." International Journal of Advanced Research in Computer Science, Vol. 10, No. 2 (2019), 64.
27.   I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, "Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization," in ICISSP, (2018), 108-116. DOI: 10.5220/0006639801080116
28.   S. Alelyani, J. Tang, and H. Liu, "Feature selection for clustering: A review," in Data Clustering: Chapman and Hall/CRC,(2018),29-60. https://doi.org/10.1007/springerreference_63708
29.   A. B. Brahim, M.. Limam, , "Ensemble feature selection for high dimensional data: a new method and a comparative study," Advances in Data Analysis and Classification, Vol. 12, No. 4, (2018),  937-952. https://doi.org/10.1007/s11634-017-0285-y
30.   T. J. Bihl, K. W. Bauer, M. A. J. I. T. o. I. F. Temple, "Feature selection for RF fingerprinting with multiple discriminant
analysis and using ZigBee device emissions," IEEE Transactions on Information Forensics and Security, Vol. 11, No. 8, (2016),  1862-1874. DOI: 10.1109/TIFS.2016.2561902.
31.   S. Saremi, S. Mirjalili, and A. J. A. i. E. S. Lewis, "Grasshopper optimisation algorithm: theory and application," Advances in Engineering Software, Vol. 105, (2017), 30-47. https://doi.org/10.1016/j.advengsoft.2017.01.004
32.   S. Saremi, S. Mirjalili, S. Mirjalili, and J. S. Dong, "Grasshopper Optimization Algorithm: Theory, Literature Review, and Application in Hand Posture Estimation," in Nature-Inspired Optimizers: Springer, (2020), 107-122. https://doi.org/10.1007/978-3-030-12127-3_7
33.   Abualigah, Laith, and Ali Diabat. "A comprehensive survey of the Grasshopper optimization algorithm: results, variants, and applications." Neural Computing and Applications, (2020), 1-24. https://doi.org/10.1007/s00521-020-04789-8
34.   Bansal, Priti, Sachin Kumar, Sagar Pasrija, and Sachin Singh. "A hybrid grasshopper and new cat swarm optimization algorithm for feature selection and optimization of multi-layer perceptron." Soft Computing, (2020), 1-27. https://doi.org/10.1007/s00500-020-04877-w
35.   J. Luo, H. Chen, Y. Xu, H. Huang, and X. J. A. M. M. Zhao, "An improved grasshopper optimization algorithm with application to financial stress prediction,"Applied Mathematical Modelling, Vol. 64, (2018), 654-668. https://doi.org/10.1016/j.apm.2018.07.044
36.   Joshi, Susheel Kumar, and Jagdish Chand Bansal. "Parameter tuning for meta-heuristics." Knowledge-Based Systems 189 (2020), 105094. https://doi.org/10.1016/j.knosys.2019.105094
37.   H. Binol, I. Guvenc, E. Bulut, and K. J. E. L. Akkaya, "Hybrid evolutionary search method for complex function optimisation problems,"Electronics Letters, Vol. 54, No. 24, (2018),  1377-1379. DOI: 10.1049/el.2018.6506
38.   D. Ackley, A connectionist machine for genetic hillclimbing. Springer Science & Business Media, (2012). https://doi.org/10.1007/978-1-4613-1997-9
39.   M. Babagoli, M. P. Aghababa, and V. J. S. C. Solouk, "Heuristic nonlinear regression strategy for detecting phishing websites,"Soft Computing, Vol. 23, No. 12, (2019), 4315-4327. https://doi.org/10.1007/s00500-018-3084-2
40.   S. Mirjalili and A. J. A. i. e. s. Lewis, "The whale optimization algorithm," Advances in engineering software, Vol. 95, (2016),  51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008
41.   Haddadi, Mohamed, and Rachid Beghdad. "A Confidence Interval Based Filtering Against DDoS Attack in Cloud Environment: A Confidence Interval Against DDoS Attack in the Cloud." International Journal of Information Security and Privacy (IJISP), Vol. 14, No. 4, (2020), 42-56. DOI: 10.4018/IJISP.2020100103
42.   S. Bista and R. J. J. o. I. S. Chitrakar, "DDoS Attack Detection Using Heuristics Clustering Algorithm and Naïve Bayes Classification," Journal of Information Security, Vol. 9, No. 01, (2017), 33. DOI: 10.4236/jis.2018.91004