Control of Steel Detachment and Metal Flow on Aluminum-Steel Friction Stir Welding of thin Joints

Document Type : Original Article

Authors

1 Department of Mechanical Engineering, Research Group - GEA, Universidad de Antioquia, Medellín, Colombia

2 Department of Mechatronics Engineering, Research Group - MATyER, Instituto Tecnológico Metropolitano, Medellín, Colombia

3 Department of Mechanical Engineering, Universidade Federal de Pernambuco, Research group- SOLDAMAT, Recife, Brazil

Abstract

In the last thirty years, the friction stirs welding (FSW) process has achieved significant importance due to the satisfactory results derived from severe deformation and low heat input during the welded joint production. These elements have been considered to implement the FSW in different welded systems, including aluminum-steel joints. In these dissimilar joints, the main interest was to obtain a welded joint with acceptable mechanical behavior. Some papers recently focused on understanding dissimilar joints process, mainly on the metal flow and its response to corrosion. However, in Al-steel joints, the presence of steel particles in the nugget zone is routine, alters both the welded joint's mechanical and chemical behavior. Thus, this work aims to evaluate the mechanisms that govern these particles' generation, the effect of offset on their formation, and estimating the characteristics of the material flow, using the detached fragments as tracers. It was established that the offset controls the metal's fluidity, which allows the accumulation of steel fragments on the advanced side, in addition to reducing its quantity, due to the decrease of irregularities in the Al-steel interface. Likewise, the metal flow was observed on the retreating side, with that mentioned on aluminum joints. In contrast, on the advanced side, there is a shear action, push down, and lateral movement towards the retreating side, driven by the high forging strength of the metal and the restriction imposed by the steel and the backing.

Keywords


1      S. Sheikhi and J. F. Dos Santos, “Effect of process parameter on mechanical properties of friction stir welded tailored blanks from aluminium alloy 6181-T4,” Science and Technology of Welding and Joining, Vol. 12, No. 4, 370-375, (2007), doi: 10.1179/174329307X173698.
2      K. Colligan, P. Konkol, J. Fisher, and J. Pickens, “Improved tools and process parameters were used to fabricate structures of 2519 aluminum armor for the U.S. Marine Corps' Advanced Amphibious Assault Vehicle,” Welding Journal, Vol. 82, No. 3, (2003).
3      M. Posada, J. P. Nguyen, D. R. Forrest, J. J. DeLoach, and R. Denale, “Friction stir welding advances joining technology,” Amptiac Q., Vol. 7, No. 3, 13-20, (2003).
4      K. Colligan, “Friction stir welding for ship construction,” Concurrent Technologies Corporation, Harrisburg, PA. 2004, [Online]. Available: http://147.160.99.83/useruploads/file/publications/FSWShipConstruction.pdf.
5      S. W. Williams, “Welding of airframes using friction stir,” Air Sp. Eur., Vol. 3, No. 3-4, 64-66, (2001), doi: 10.1016/s1290-0958(01)90059-0.
6      M. J. Brooker, A. J. M. Van Deudekom, S. W. Kallee, and P. D. Sketchley, “Applying friction stir welding to the Ariane 5 main motor thrust frame,” European Space Agency, (Special Publication) ESA SP, No. 468. 507-511, (2001).
7      J. Ding, R. Carter, K. LA WLESS, A. Nunes, and C. Russell, “Friction stir welding flies high at NASA,” Welding Journal, Vol. 85, No. 3, 54-59, (2006).
8      W. M. Thomas, E. D. Nicholas, J. C. Needhan, M. G. Murch, P. Temple-Smith, and C. J. Dawes, “International patent application PCT/GB92/02203 and GB patent application 9125978.8,” UK Patent Office, London. 1991.
9      R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Materials Science and Engineering R: Reports, Vol. 50, No. 1-2. Elsevier, 1-78, (2005), doi: 10.1016/j.mser.2005.07.001.
10    I. T. C. ; J. Langari, F. Kolahan, and K. Aliakbari, “Effect of Tool Speed on Axial Force, Mechanical Properties and Weld Morphology of Friction Stir Welded Joints of A7075-T651,” International Journal of Engineering, Transactions C: Aspects, Vol. 29, No. 3, 403-410, (2016), doi: 10.5829/idosi.ije.2016.29.03c.15.
11    J. Q. Su, T. W. Nelson, R. Mishra, and M. Mahoney, “Microstructural investigation of friction stir welded 7050-T651 aluminium,” Acta Materialia, Vol. 51, No. 3, 713-729, (2003), doi: 10.1016/S1359-6454(02)00449-4.
12    R. Singh, S. A. Rizvi, and S. P. Tewari, “Effect of Friction Stir Welding on the Tensile Properties of AA6063 under Different Conditions,” International Journal of Engineering, Transactions A: Basics, Vol. 30, No. 4, 597-603, (2017).
13    R. M. Leal, C. Leitão, A. Loureiro, D. M. Rodrigues, and P. Vilaça, “Material flow in heterogeneous friction stir welding of thin aluminium sheets: Effect of shoulder geometry,” Materials Science and Engineering A, Vol. 498, No. 1-2, 384-391, 2008, doi: 10.1016/j.msea.2008.08.018.
14    P. B. Prangnell and C. P. Heason, “Grain structure formation during friction stir welding observed by the ‘stop action technique,’” Acta Materialia, Vol. 53, No. 11, 3179-3192,  (2005), doi: 10.1016/j.actamat.2005.03.044.
15    I. Transactions B ; J. Fabregas, A. Villegas, and J. Martínez Guarín, “A Coupled Rigid-viscoplastic Numerical Modeling for Evaluating Effects of Shoulder Geometry on Friction Stir-welded Aluminum Alloys,” International Journal of Engineering, Transactions B: Applications, Vol. 32, No. 2, 313-321,  (2019), doi: 10.5829/ije.2019.32.02b.17.
16    S. Xu and X. Deng, “A study of texture patterns in friction stir welds,” Acta Materialia, Vol. 56, No. 6, 1326-1341,  2008, doi: 10.1016/j.actamat.2007.11.016.
17    O. D. Hincapié, J. A. Salazar, J. J. Restrepo, E. A. Torres, and J. Graciano-Uribe, “Control of Formation of Intermetallic Compound in Dissimilar Joints Aluminum-steel,” International Journal of Engineering, Transactions A: Basics, Vol. 32, No. 1, 127-136, (2019), Accessed: Jul. 13, 2019. [Online].
18    N. Ethiraj, T. Sivabalan, B. Sivakumar, S. Vignesh Amar, N. Vengadeswaran, and K. Vetrivel, “Effect of tool rotational speed on the tensile and microstructural properties of friction stir welded different grades of stainless steel joints,” ." International Journal of Engineering, Transactions A: Basics, Vol. 33, No. 1, 141-147, (2020), doi: 10.5829/ije.2020.33.01a.16.
19    L. E. Murr, “A review of FSW research on dissimilar metal and alloy systems,” Journal of Materials Engineering and Performance, Vol. 19, No. 8, 1071-1089, (2010), doi: 10.1007/s11665-010-9598-0.
20    T. DebRoy and H. K. D. H. Bhadeshia, “Friction stir welding of dissimilar alloys - A perspective,” Science and Technology of Welding and Joining, Vol. 15, No. 4, 266-270, (2010), doi: 10.1179/174329310X12726496072400.
21    V. Firouzdor and S. Kou, “Al-to-Mg friction stir welding: Effect of material position, travel speed, and rotation speed,” Metallurgical and Materials Transactions A Physical Metallurgy and Materials Science, Vol. 41, No. 11, 2914-2935, (2010), doi: 10.1007/s11661-010-0340-1.
22    T. Kakiuchi, Y. Uematsu, and K. Suzuki, “Evaluation of fatigue crack propagation in dissimilar Al/steel friction stir welds,” in Procedia Structural Integrity,  (2016), Vol. 2, 1007-1014, doi: 10.1016/j.prostr.2016.06.129.
23    S. Y. Anaman, H. H. Cho, H. Das, J. S. Lee, and S. T. Hong, “Microstructure and mechanical/electrochemical properties of friction stir butt welded joint of dissimilar aluminum and steel alloys,” Materials Characterization, Vol. 154, 67-79,  (2019), doi: 10.1016/j.matchar.2019.05.041.
24    T. Yasui, T. Ishii, Y. Shimoda, M. Tsubaki, M. Fukumoto, and T. Shinoda, “Friction stir welding between aluminum and steel with high welding speed,” Production. 2004.
25    Q. Zheng, X. Feng, Y. Shen, G. Huang, and P. Zhao, “Dissimilar friction stir welding of 6061 Al to 316 stainless steel using Zn as a filler metal,” Journal of Alloys and Compounds, Vol. 686, 693-701,  (2016), doi: 10.1016/j.jallcom.2016.06.092.
26    T. Wang, H. Sidhar, R. S. Mishra, Y. Hovanski, P. Upadhyay, and B. Carlson, “Evaluation of intermetallic compound layer at aluminum/steel interface joined by friction stir scribe technology,” Materials and Design, Vol. 174, 107795, (2019), doi: 10.1016/j.matdes.2019.107795.
27    B. Seo, K. H. Song, and K. Park, “Corrosion Properties of Dissimilar Friction Stir Welded 6061 Aluminum and HT590 Steel,” Metals and Materials International, Vol. 24, No. 6, 1232-1240,  (2018), doi: 10.1007/s12540-018-0135-2.
28    M. Thomä, G. Wagner, B. Straß, B. Wolter, S. Benfer, and W. Fürbeth, “Ultrasound enhanced friction stir welding of aluminum and steel: Process and properties of EN AW 6061/DC04-Joints,” Journal of Materials Science and Technology, Vol. 34, No. 1, 163-172,  (2018), doi: 10.1016/j.jmst.2017.10.022.
29    Y. Huang et al., “Material-flow behavior during friction-stir welding of 6082-T6 aluminum alloy,” The International Journal of Advanced Manufacturing Technology, Vol. 87, No. 1-4, 1115-1123,  (2016), doi: 10.1007/s00170-016-8603-7.
30    K. Colligan, “Material flow behavior during friction stir welding of aluminum,” Weld. Journal-New York-, Vol. 78, 229-s, 1999.
31    T. F. A. Santos, E. A. Torres, T. F. C. Hermengildo, and A. J. Ramirez, “Development of ceramic backing for friction stir welding and processing,” Welding International, Vol. 30, No. 5, 338-347, (2016), doi: 10.1080/09507116.2015.1096498.
32    E. Torres and A. Ramirez, “União de juntas dissimilares alumínio-aço de chapas finas pelo processo de soldagem por atrito com pino não consumível (sapnc),” Soldag. e Insp., Vol. 16, No. 3, 265-273, (2011), doi: 10.1590/S0104-92242011000300008.
33    E. Torres and A. Ramirez, “Efeito dos parâmetros de processo na obtenção e na microestrutura de juntas alumínio-aço realizadas mediante Soldagem POR Atrito COM Pino nãO Consumível (SAPNC),” Soldag. e Insp., Vol. 18, No. 3, 245-256, (2013), doi: 10.1590/S0104-92242013000300007.
34    P. Alvarez, G. Janeiro, A. A. M. Da Silva, E. Aldanondo, and A. Echeverría, “Material flow and mixing patterns during dissimilar FSW,” in Science and Technology of Welding and Joining,  (2010), Vol. 15, No. 8, 648-653, doi: 10.1179/136217110X12785889549543.
35    A. A. M. da Silva, E. Arruti, G. Janeiro, E. Aldanondo, P. Alvarez, and A. Echeverria, “Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA7075-T6 aluminium alloys friction stir welds,” Materials and Design, Vol. 32, No. 4, 2021-2027,  (2011), doi: 10.1016/j.matdes.2010.11.059.
36    W. H. Jiang and R. Kovacevic, “Feasibility study of friction stir welding of 6061-T6 aluminium alloy with AISI 1018 steel,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., Vol. 218, No. 10, 1323-1331,  2004, doi: 10.1243/0954405042323612.
37    H. Uzun, C. Dalle Donne, A. Argagnotto, T. Ghidini, and C. Gambaro, “Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel,” Materials and Design, Vol. 26, No. 1, 41-46,  (2005), doi: 10.1016/j.matdes.2004.04.002.
38    S. Amini and M. R. Amiri, “Study of ultrasonic vibrations' effect on friction stir welding,” The International Journal of Advanced Manufacturing Technology, Vol. 73, No. 1-4, 127-135,  2014, doi: 10.1007/s00170-014-5806-7.
39    R. Rafiei, A. Ostovari Moghaddam, M. R. Hatami, F. Khodabakhshi, A. Abdolahzadeh, and A. Shokuhfar, “Microstructural characteristics and mechanical properties of the dissimilar friction-stir butt welds between an Al-Mg alloy and A316L stainless steel,” The International Journal of Advanced Manufacturing Technology, Vol. 90, No. 9-12, 2785-2801,  (2017), doi: 10.1007/s00170-016-9597-x.
40    E. A. Torres López and A. J. Ramirez, “Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding,” Revista de Metalurgia, Vol. 51, No. 4, 1-10,  2015, doi: 10.3989/revmetalm.053.
41    T. Chen, “Process parameters study on FSW joint of dissimilar metals for aluminum-steel,” Journal of Materials Science, Vol. 44, No. 10, 2573-2580, (2009), doi: 10.1007/s10853-009-3336-8.
42    X. Liu, S. Lan, and J. Ni, “Analysis of process parameters effects on friction stir welding of dissimilar aluminum alloy to advanced high strength steel,” Materials and Design, Vol. 59, 50-62, 2014, doi: 10.1016/j.matdes.2014.02.003.
43    M. Pourali, A. Abdollah-zadeh, T. Saeid, and F. Kargar, “Influence of welding parameters on intermetallic compounds formation in dissimilar steel/aluminum friction stir welds,” J. Alloys Compd., Vol. 715, 1-8, (2017), doi: 10.1016/j.jallcom.2017.04.272.
44    W. B. Lee, M. Schmuecker, U. A. Mercardo, G. Biallas, and S. B. Jung, “Interfacial reaction in steel-aluminum joints made by friction stir welding,” Scripta Materialia , Vol. 55, No. 4, 355-358, (2006), doi: 10.1016/j.scriptamat.2006.04.028.
45    A. A. Fallahi, A. Shokuhfar, A. Ostovari Moghaddam, and A. Abdolahzadeh, “Analysis of SiC nano-powder effects on friction stir welding of dissimilar Al-Mg alloy to A316L stainless steel,” Journal of Manufacturing Processes, Vol. 30, 418-430, (2017), doi: 10.1016/j.jmapro.2017.09.027.
46    X. Liu, S. Lan, and J. Ni, “Experimental investigation on joining dissimilar aluminum alloy 6061 to TRIP 780/800 steel through friction stir welding,” Journal of Engineering Materials and Technology, Transactions of the ASME, Vol. 137, No. 4,  2015, doi: 10.1115/1.4030480.
47    R. S. Coelho, A. Kostka, J. F. dos Santos, and A. Kaysser-Pyzalla, “Friction-stir dissimilar welding of aluminium alloy to high strength steels: Mechanical properties and their relation to microstructure,” Materials Science and Engineering A , Vol. 556, 175-183, (2012), doi: 10.1016/j.msea.2012.06.076.
[48   M. Movahedi, A. H. Kokabi, S. M. Seyed Reihani, and H. Najafi, “Effect of tool travel and rotation speeds on weld zone defects and joint strength of aluminium steel lap joints made by friction stir welding,” Science and Technology of Welding and Joining, Vol. 17, No. 2, 162-167, (2012), doi: 10.1179/1362171811Y.0000000092.
49    K. Kimapong and T. Watanabe, “Friction stir welding of aluminum alloy to steel,” Welding Journal, Vol. 83, No. 10, p. 277, 2004.
50    F. Gratecap, M. Girard, S. Marya, and G. Racineux, “Exploring material flow in friction stir welding: Tool eccentricity and formation of banded structures,” International Journal of Material Forming, Vol. 5, No. 2, 99-107, (2012), doi: 10.1007/s12289-010-1008-5.
51    R. W. Fonda and J. F. Bingert, “Texture variations in an aluminum friction stir weld,” Scripta Materialia , Vol. 57, No. 11, 1052-1055,  (2007), doi: 10.1016/j.scriptamat.2007.06.068.
52    S. Muthukumaran and S. K. Mukherjee, “Multi-layered metal flow and formation of onion rings in friction stir welds,” The International Journal of Advanced Manufacturing Technology, Vol. 38, No. 1-2, 68-73, (2008).
53    Z. W. Chen and S. Cui, “On the forming mechanism of banded structures in aluminium alloy friction stir welds,” Scripta Materialia , Vol. 58, No. 5, 417-420, Mar. (2008), doi: 10.1016/j.scriptamat.2007.10.026.
54    J. Teimournezhad and A. Masoumi, “Experimental investigation of onion ring structure formation in friction stir butt welds of copper plates produced by non-threaded tool pin,” Science and Technology of Welding and Joining, Vol. 15, No. 2, 166-170,  2010, doi: 10.1179/136217109X12577814486610.
55    J. Schneider, S. Brooke, and A. C. Nunes, “Material Flow Modification in a FSW Through Introduction of Flats,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., Vol. 47, No. 1, 720-730,  (2016), doi: 10.1007/s11663-015-0523-7.
56    Z. W. Chen, T. Pasang, and Y. Qi, “Shear flow and formation of Nugget zone during friction stir welding of aluminium alloy 5083-O,” Materials Science and Engineering A , Vol. 474, No. 1-2, 312-316,  (2008), doi: 10.1016/j.msea.2007.05.074.
57    A. Tongne, C. Desrayaud, M. Jahazi, and E. Feulvarch, “On material flow in Friction Stir Welded Al alloys,” Journal of Materials Processing Technology, Vol. 239, 284-296,  (2017), doi: 10.1016/j.jmatprotec.2016.08.030.
58    K. Kumar and S. V. Kailas, “The role of friction stir welding tool on material flow and weld formation,” Materials Science and Engineering A , Vol. 485, No. 1-2, 367-374,  (2008), doi: 10.1016/j.msea.2007.08.013.
59    R. Zettler et al., “Effect of tool geometry and process parameters on material flow in FSW of AN AA 2024-T351 alloy,” in Welding in the World,  (2005), Vol. 49, No. 3-4, 41-46, doi: 10.1007/BF03266474.
60    Y. H. Zhao, S. B. Lin, F. X. Qu, and L. Wu, “Influence of pin geometry on material flow in friction stir welding process,” Materials Science and Technology , Vol. 22, No. 1, 45-50,  (2006), doi: 10.1179/174328406X78424.
61    K. Kumar and S. V. Kailas, “Positional dependence of material flow in friction stir welding: Analysis of joint line remnant and its relevance to dissimilar metal welding,” Science and Technology of Welding and Joining, Vol. 15, No. 4, 305-311,  (2010), doi: 10.1179/136217109X12568132624280.
62    R. S. Coelho, A. Kostka, J. dos Santos, and A. R. Pyzalla, “EBSD Technique Visualization of Material Flow in Aluminum to Steel Friction-stir Dissimilar Welding,” Advanced Engineering Materials, Vol. 10, No. 12, 1127-1133,  (2008), doi: 10.1002/adem.200800227.
[63   K. Kimapong and T. Watanabe, “Lap Joint of A5083 Aluminum Alloy and SS400 Steel by Friction Stir Welding,” Materials Transactions Vol. 46, No. 4, 835-841,  (2005), doi: 10.2320/matertrans.46.835.
64    J. A. Schneider and A. C. Nunes, “Characterization of plastic flow and resulting microtextures in a friction stir weld,” Metallurgical and Materials Transactions B Process Metallurgy and Materials Science, Vol. 35, No. 4, 777-783, 2004, doi: 10.1007/s11663-004-0018-4.
65    R. Fonda, A. Reynolds, C. R. Feng, K. Knipling, and D. Rowenhorst, “Material flow in friction stir welds,” Metallurgical and Materials Transactions A Physical Metallurgy and Materials Science, Vol. 44, No. 1, 337-344,  (2013), doi: 10.1007/s11661-012-1460-6.
66    A. Gerlich, P. Su, M. Yamamoto, and T. H. North, “Material flow and intermixing during dissimilar friction stir welding,” Science and Technology of Welding and Joining, Vol. 13, No. 3, 254-264,  (2008), doi: 10.1179/174329308X283910.
67    M. N. Avettand-Fenoel, R. Taillard, J. Laye, and T. O. Vre, “Experimental investigation of three-dimensional (3-D) material flow pattern in thick dissimilar 2050 friction-stir welds,” Metallurgical and Materials Transactions A Physical Metallurgy and Materials Science, Vol. 45, No. 2, 563-578,  2014, doi: 10.1007/s11661-013-2015-1.
68    D. Texier, Y. Zedan, T. Amoros, E. Feulvarch, J. C. Stinville, and P. Bocher, “Near-surface mechanical heterogeneities in a dissimilar aluminum alloys friction stir welded joint,” Materials and Design, Vol. 108, 217-229,  (2016), doi: 10.1016/j.matdes.2016.06.091.
69    H. R. Doude, J. A. Schneider, and A. C. Nunes, “Influence of the tool shoulder contact conditions on the material flow during friction stir welding,” M Metallurgical and Materials Transactions A Physical Metallurgy and Materials Science, Vol. 45, No. 10, 4411-4422,  2014, doi: 10.1007/s11661-014-2384-0.
70    L. Wan and Y. Huang, “Friction stir welding of dissimilar aluminum alloys and steels: a review,” The International Journal of Advanced Manufacturing Technology, Vol. 99, No. 5-8, 1781-1811,  (2018), doi: 10.1007/s00170-018-2601-x.
71    B. C. Liechty and B. W. Webb, “Flow field characterization of friction stir processing using a particle-grid method,” Journal of Materials Processing Technology, Vol. 208, No. 1-3, 431-443,  (2008), doi: 10.1016/j.jmatprotec.2008.01.008.
72    X. H. Zeng, P. Xue, D. Wang, D. R. Ni, B. L. Xiao, and Z. Y. Ma, “Effect of Processing Parameters on Plastic Flow and Defect Formation in Friction-Stir-Welded Aluminum Alloy,” Metallurgical and Materials Transactions A Physical Metallurgy and Materials Science, Vol. 49, No. 7, 2673-2683, (2018), doi: 10.1007/s11661-018-4615-2.
73    X. Liu, G. Chen, J. Ni, and Z. Feng, “Computational Fluid Dynamics Modeling on Steady-State Friction Stir Welding of Aluminum Alloy 6061 to TRIP Steel,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, Vol. 139, No. 5,  (2017), doi: 10.1115/1.4034895.
74    K. Chen, X. Liu, and J. Ni, “A review of friction stir-based processes for joining dissimilar materials,” The International Journal of Advanced Manufacturing Technology, Vol. 104, No. 5-8, 1709-1731,  (2019), doi: 10.1007/s00170-019-03975-w.
75    Frigaard, Grong, and O. T. Midling, “A process model for friction stir welding of age hardening aluminum alloys,” Metallurgical and Materials Transactions A Physical Metallurgy and Materials Science, Vol. 32, No. 5, 1189-1200, (2001), doi: 10.1007/s11661-001-0128-4.
76    M. Z. H. Khandkar, J. A. Khan, and A. P. Reynolds, “Prediction of temperature distribution and thermal history during friction stir welding: input torque based model,” Science and Technology of Welding and Joining, Vol. 8, No. 3, 165-174, (2003).
77    J. Schneider, R. Beshears, and A. C. Nunes, “Interfacial sticking and slipping in the friction stir welding process,” Materials Science and Engineering A , Vol. 435-436, 297-304,  (2006), doi: 10.1016/j.msea.2006.07.082.
78    H. S. Idagawa, E. A. Torres, and A. J. Ramirez, “CFD modeling of dissimilar aluminum-steel friction stir welds,” (2013).
79    R. Nandan, T. DebRoy, and H. K. D. H. Bhadeshia, “Recent advances in friction-stir welding - Process, weldment structure and properties,” Progress in Materials Science, Vol. 53, No. 6. Pergamon, 980-1023, (2008), doi: 10.1016/j.pmatsci.2008.05.001.