Experimental Study of Polyvinyl Alcohol Nanocomposite Film Reinforced by Cellulose Nanofibers from Agave Cantala

Document Type : Original Article

Authors

1 Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Indonesia; Department of Mechanical Technology, Universitas Muhammadiyah Yogyakarta, Indonesia

2 Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Indonesia

3 Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Indonesia

Abstract

This paper presents an experimental study of addition of cellulose nanofibers (CNF) extracted by the chemical-ultrasonication process from agave cantala leaf plants in the matrix of polyvinyl alcohol (PVA). Combining these materials produce the nanocomposite film with a thickness of 30 μm. The nanocomposite characteristic was investigated by the addition of CNF (0, 2, 5, 8, and 10 wt%) in PVA suspension (3 wt.%). PVA/CNF nanocomposite films were prepared by a casting solution method. The fibrillation of fibers to CNF was analyzed using Scanning Electron Microscopy and Transmission Electron Microscopy. The nanocomposite film functional group's molecular chemical bond and structural analysis were tested using Fourier Transform Infrared and X-ray diffraction. The PVA/CNF nanocomposite film has significant advantages on the ultraviolet barrier, thermal stability tested by Differential Scanning Calorimetry and Thermogravimetric Analyzer, and tensile strength. Overall, the optimal addition of CNF is 8 wt.% in matrix, resulting in the highest crystallinity index (37.5%), the tensile strength and elongation at break was an increase of 79% and 138%, respectively. It has good absorbing ultraviolet rays (82.4%) and high thermal stability (365oC).

Keywords


  1. Kumar, Ritesh, Sanju Kumari, Shivani Singh Surah, Bhuvneshwar Rai, Rakesh Kumar, Sidhharth Sirohi, and Gulshan Kumar. "A simple approach for the isolation of cellulose nanofibers from banana fibers." Materials Research Express, Vol. 6, No. 10, (2019), 105601. doi: 10.1088/2053-1591/ab3511
  2. Syafri, Edi, Anwar Kasim, Hairul Abral, and Alfi Asben. "Cellulose nanofibers isolation and characterization from ramie using a chemical-ultrasonic treatment." Journal of Natural Fibers, (2018). doi: 10.1080/15440478.2018.1455073
  3. Meng, Fanrong, Guoqing Wang, Xueyu Du, Zhifen Wang, Shuying Xu, and Yucang Zhang. "Extraction and characterization of cellulose nanofibers and nanocrystals from liquefied banana pseudo-stem residue." Composites Part B: Engineering, Vol.160, (2019), 341-347. doi: 10.1016/j.compositesb.2018.08.048
  4. Moon, Robert J., Ashlie Martini, John Nairn, John Simonsen, and Jeff Youngblood, “Cellulose nanomaterials review: structure, properties and nanocomposites.” Chemical Society Reviews, Vol. 40, (2011), 3941-3994. doi: 10.1039/c0cs00108b
  5. Panyasiri, Panee, Naiyasit Yingkamhaeng, Nga Tien Lam, and Prakit Sukyai. "Extraction of cellulose nanofibrils from amylase-treated cassava bagasse using high-pressure homogenization." Cellulose, Vol. 25, No. 3, (2018), 1757-1768. doi: 10.1007/s10570-018-1686-6
  6. Ilyas, R. A., S. M. Sapuan, M. R. Ishak, and E. S. Zainudin. "Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): effect of cycles on their yield, physic-chemical, morphological and thermal behavior." International Journal of Biological Macromolecules, Vol. 123 (2019), 379-388. doi: 10.1016/j.ijbiomac.2018.11.124
  7. Supian, Muhammad Arif Fahmi, Khairatun Najwa Mohd Amin, Saidatul Shima Jamari, and Shahril Mohamad. "Production of cellulose nanofiber (CNF) from empty fruit bunch (EFB) via mechanical method." Journal of Environmental Chemical Engineering, Vol.8, No. 1, (2020), 103024. doi: 10.1016/j.jece.2019.103024
  8. Bhatnagar, A., and M. Sain. "Processing of cellulose nanofiber-reinforced composites." Journal of Reinforced Plastics and Composites, Vol.24, No. 12, (2005), 1259-1268. doi: 10.1177/0731684405049864
  9. Song, Yan, Wei Jiang, Yuanming Zhang, Haoxi Ben, Guangting Han, and Arthur J. Ragauskas. "Isolation and characterization of cellulosic fibers from kenaf bast using steam explosion and Fenton oxidation treatment." Cellulose, Vol. 25, No. 9, (2018), 4979-4992, doi: 10.1186/s40201-015-0167-1
  10. Rochardjo, H.S.B Jamasri and Yudhanto, F. “Extraction of Natural Fibers by High-Speed Blender to Produce Cellulose Sheet Composite.”International Review of Mechanical Engineering, Vol. 13, No. 12, (2019), 691-699. doi: 10.15866/ireme.v13i12.17586
  11. Abe, Kentaro, and Hiroyuki YaNo. "Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber." Cellulose, Vol. 16, No. 6, (2009), 1017-1023. doi: 10.1007/s10570-009-9334-9.
  12. Yudhanto, F. and Rochardjo, H.S., “Application of taguchi method for selection parameter bleaching treatments against mechanical and physical properties of agave cantala fiber.” In IOP Conference Series: Materials Science and Engineering, IOP Publishing, Vol. 352, (2018),  012002. doi:10.1088/1757-899X/352/1/012002
  13. Yudha, V., Rochardjo, H.S.B., Jamasri, J., Widyorini, R., Yudhanto, F. and Darmanto, S., “Isolation of cellulose from salacca midrib fibers by chemical treatments.” In IOP Conference Series: Materials Science and Engineering, IOP Publishing, Vol. 434, (2018), 012078. doi: 10.1088/1757-899X/434/1/012078
  14. Carvalho, Kelly Cristina Coelho, Daniella Regina Mulinari, Herman Jacobus Cornellis Voorwald, and Maria Odila Hilário Cioffi, “Chemical modification effect on the mechanical properties of hips/coconut fiber composites.” BioResources,Vol. 5, (2010), 1143-1155. doi: 10.4186/ej.2012.16.2.73
  15. Kargarzadeh, Hanieh, Ishak Ahmad, Ibrahim Abdullah, Alain Dufresne, Siti Yasmine Zainudin, and Rasha M. Sheltami, “Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanoc extracted from kenaf bast fibers.” Cellulose, Vol. 19, (2012), 855-866. doi: 10.1007/s10570-012-9684-6
  16. Rizal, Samsul, Deepu Gopakumar, Sulaiman Thalib, Syifaul Huzni, and H. Abdul Khalil, “Interfacial compatibility evaluation on the fiber treatment in the typha fiber reinforced epoxy composites and their effect on the chemical and mechanical properties.” Polymers, Vol. 10, (2018), 1316. doi: 10.3390/polym10121316.
  17. Listyanda, R. Faiz, Kusmono, Muhammad Waziz Wildan, and Mochammad Noer Ilman. "Extraction and characterization of nanocrystalline cellulose (NCC) from ramie fiber by sulphuric acid hydrolysis." In AIP Conference Proceedings, Vol. 2217, No. 1, p. 030069. AIP Publishing LLC, (2020). doi: 10.1063/5.0001068.
  18. Kusmono, K. and Akbar, D.A., “Influence of Hydrolysis Conditions on Characteristics of Nanocrystalline Cellulose Extracted from Ramie Fibers by Hydrochloric Acid Hydrolysis.” (2020), doi: 10.21203/rs.3.rs-31322/v1.
  19. Krishnadev, P., Subramanian, K.S., Janavi, G.J., Ganapathy, S. and Lakshmanan, A., “Synthesis and Characterization of Nano-fibrillated Cellulose Derived from Green Agave americana L. Fiber.” BioResources, Vol. 15, No. 2 (2020) 2442-2458. doi: 10.15376/biores.15.2.2442-2458
  20. Zarina, Siti, and Ishak Ahmad. "Biodegradable composite films based on κ-carrageenan reinforced by cellulose nanocrystal from kenaf fibers." BioResources, Vol. 10, No. 1 (2015), 256-271. doi: 10.15376/biores.10.1.256-271
  21. Kargarzadeh, Hanieh, Marcos Mariano, Jin Huang, Ning Lin, Ishak Ahmad, Alain Dufresne, and Sabu Thomas, “Recent developments on nanocellulose reinforced polymer nanocomposites: A review.” Polymer, Vol. 132, (2017) 368-393. doi: 10.1016/j.polymer.2017.09.043
  22. Teja Prathipati, S.R.R., Rao, C.B.K. and Dakshina Murthy, N.R., “Mechanical behavior of hybrid fiber reinforced high strength concrete with graded fibers.” International Journal of Engineering, Transactions B: Applications, Vol. 33, No. 8 (2020), 1465-1471. doi: 10.5829/IJE.2020.33.08B.04
  23. Chen, Wenshuai, Kentaro Abe, Kojiro Uetani, Haipeng Yu, Yixing Liu, and Hiroyuki Yano, “Individual cotton cellulose nanofibers: pretreatment and fibrillation technique.“ Cellulose, Vol. 21, No. 3, (2014), 1517-1528. doi: 10.1007/s10570-014-0172-z
  24. Zhang, Wei, Zhennan Zhang, and Xinping Wang, “Investigation on surface molecular conformations and pervaporation performance of the poly(vinyl alcohol) (PVA) membrane.” Journal of Colloid and Interface Science, Vol. 333, (2009), 346-353. doi: 10.1016/j.jcis.2009.01.058
  25. Tang, Yufeng, Yumin Du, Yan Li, Xiaoying Wang, and Xianwen Hu, “A thermosensitive chitosan/poly (vinyl alcohol) hydrogel containing hydroxyapatite for protein delivery.” Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, Vol. 91, (2009), 953-963. doi: 10.1002/jbm.a.32240
  26. Ghaderi, Moein, Mohammad Mousavi, Hossein Yousefi, and Mohsen Labbafi, “All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application.” Carbohydrate Polymers, Vol. 104, (2014), 59-65. doi: 10.1016/j.carbpol.2014.01.013
  27. Perumal, Anand Babu, Periyar Selvam Sellamuthu, Reshma B. Nambiar, and Emmanuel Rotimi Sadiku, “Development of polyvinyl alcohol/chitosan bio-nanocomposite films reinforced with cellulose nanocrystals isolated from rice straw.” Applied Surface Science, Vol. 449, (2018), 591-602. doi: 10.1016/j.apsusc.2018.01.022
  28. Huang, Yukun, Lei Mei, Xianggui Chen, and Qin Wang, “Recent developments in food packaging based on nanomaterials.” Nanomaterials, Vol. 8, No. 10 (2018), 830. doi: 10.3390/nano8100830
  29. Siró, István, and David Plackett, “Microfibrillated cellulose and new nanocomposite materials: a review.” Cellulose, Vol.17, No.3 (2010), 459-494. doi: 10.1007/s10570-010-9405-y
  30. He, Wen, Shenxue Jiang, Qisheng Zhang, and Mingzhu Pan, ”Isolation and characterization of cellulose nanofibers from Bambusa rigida.” BioResources, Vol.8, No. 4 (2013), 5678-5689. doi: 10.15376/biores.8.4.5678-5689
  31. Yudhanto, F, Jamasri and Rochardjo, H.S.B.,  “Physical and Thermal Properties of Cellulose Nanofibers (CNF) Extracted from Agave Cantala Fibers Using Chemical-Ultrasonic Treatment.” International Review of Mechanical Engineering, Vol. 12, No. 7, (2018), 597-603. doi: 10.15866/ireme.v12i7.14931
  32. Yudhanto, F., Jamasri  and Rochardjo, H.S.B., “Physical and Mechanical Characterization of Polyvinyl Alcohol Nanocomposite Made from Cellulose Nanofibers.” In Materials Science Forum, Trans Tech Publications Ltd. Vol. 988, (2020),  65-72. doi: 10.4028/www.scientific.net/MSF.988.65
  33. Segal, L., Creely, J. J., Martin Jr., A.E., Conrad, C.M., “Anempirical method for estimating the degree of crystallinity ofnative cellulose using the X-ray diffractometer.” Textile Research Journal, (1959), 786-794. doi: 10.1177/004051755902901003
  34. Schick, C., “Differential scanning calorimetry (DSC) of semicrystalline polymers.” Analytical and Bioanalytical Chemistry, Vol. 395, No. 6 (2009), 1589. doi: 10.1007/s00216-009-3169-y
  35. Patel, Arunendra Kumar, R. Bajpai, and J. M. Keller, “On the crystallinity of PVA/palm leaf biocomposite using DSC and XRD techniques.” Microsystem Technologies, Vol. 20, No.1 (2014), 41-49. doi: 10.1007/s00542-013-1882-0
  36. Kong, Y., and J. N. Hay, “The measurement of the crystallinity of polymers by DSC.” Polymer,Vol. 43, No.14 (2002), 3873-3878. doi: 10.1016/S0032-3861(02)00235-5
  37. Rosa, M. F., Medeiros, E. S., Malmonge, J. A., Gregorski, K. S., Wood, D. F., Mattoso, L. H. C., ... & Imam, S. H, “Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior.” Carbohydrate Polymers, Vol. 81, No. 1 (2010), 83-92. doi: 10.1016/j.carbpol.2010.01.059
  38. Shahbazi, P., Behzad, T., & Heidarian, P, “Isolation of cellulose nanofibers from poplar wood and wheat straw: optimization of bleaching step parameters in a chemo-mechanical process by experimental design”, Wood Science and Technology, Vol. 51, No. 5, (2017), 1173-1187 doi: 10.1007/s00226-017-0929-2
  39. Neto, W. P. F., Mariano, M., Da Silva, I. S. V., Silvério, H. A., Putaux, J. L., Otaguro, H., ... & Dufresne, “A. Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls.” Carbohydrate Polymers, Vol. 153, (2016), 143-152. doi: 10.1016/j.carbpol.2016.07.073
  40. Hassan, M., Berglund, L., Hassan, E., Abou-Zeid, R., & Oksman, K., “Effect of xylanase pretreatment of rice straw unbleached soda and neutral sulfite pulps on isolation of nanofibers and their properties.” Cellulose, Vol.25, No.5 (2018), 2939-2953. doi: 10.1007/s10570-018-1779-2
  41. de Morais Teixeira, E., Bondancia, T. J., Teodoro, K. B. R., Corrêa, A. C., Marconcini, J. M., & Mattoso, L. H. C., “Sugarcane bagasse whiskers: extraction and characterizations.” Industrial Crops and Products, Vol. 33, No.1 (2011), 63-66. doi: 10.1016/j.indcrop.2010.08.009
  42. Siqueira, G., Tapin-Lingua, S., Bras, J., da Silva Perez, D., & Dufresne, A, ”Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers.” Cellulose, Vol. 17, No. 6 (2010), 1147-1158. doi: 10.1007/s10570-010-9449-z
  43. Poletto, Matheus, Vinícios Pistor, and Ademir J. Zattera, “Structural characteristics and thermal properties of native cellulose.” InTech, Vol. 10, (2013), 2705. doi: 10.5772/50452. 1
  44. Khalil, HPS Abdul, H. Ismail, H. D. Rozman, and M. N. Ahmad, “The effect of acetylation on interfacial shear strength between plant fibres and various matrices.” European Polymer Journal, Vol. 37, No. 5 (2001), 1037-1045. doi: 10.1016/S0014-3057(00)00199-3
  45. Rezaei, S., Najafpour, G.D., Mohammadi, M. Moghadamnia, A.A. Kazemi., "Formic acid and microwave assisted extraction of curcumin from turmeric (Curcuma longa L.).” International Journal of Engineering. Transactions B: Applications, Vol. 29, No. 2 (2016), 145-151. doi: 10.5829/idosi.ije.2016.29.02b.02
  46. Lim, Lim, Noor Rosli, Ishak Ahmad, Azwan Mat Lazim, and Mohd Mohd Amin, “Synthesis and swelling behavior of pH-sensitive semi-IPN superabsorbent hydrogels based on poly (acrylic acid) reinforced with cellulose nanocrystals.” Nanomaterials, Vol. 7, No. 11 (2017), 399. doi: 10.3390/nano7110399
  47. Sadeghifar, Hasan, and Arthur Ragauskas. "Lignin as a UV Light Blocker—A Review." Polymers, Vol.12, No. 5 (2020): 1134. doi: 10.3390/polym12051134
  48. Agrawal, lS L., and Arvind Awadhia, "DSC and conductivity studies on PVA based proton conducting gel electrolytes.” Bulletin of Materials Science, Vol. 27, No. 6 (2004), 523-527. doi: 10.1007/BF02707280
  49. Rynkowska, Edyta, Kateryna Fatyeyeva, Stéphane Marais, Joanna Kujawa, and Wojciech Kujawski, "Chemically and Thermally Crosslinked PVA-Based Membranes: Effect on Swelling and Transport Behavior.” Polymers, Vol.11, No.11, (2019), 1799. doi: 10.3390/polym11111799
  50. Nishiyama, Yoshiharu, Paul Langan, and Henri Chanzy. "Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction." Journal of the American Chemical Society, Vol. 124, No. 31 (2002), 9074. doi: 10.1021/ja0257319