A Preliminary Field Study of Antifouling Paint Perfomance After Short Exposure in Mandara Bali, Indonesia

Document Type : Original Article

Authors

1 Research Center for Metallurgy and Material, Indonesian Institute of Sciences, Banten, Indonesia

2 Research Center and Development of Roads and Bridge, Indonesia's Ministry of Public Works and Housing, Bandung, Indonesia

Abstract

Antifouling paints are applied to prevent the growth of marine biofouling. In Indonesia, that paint is widely used for ship which commonly used copper-based biocide. In fact, there is no or little comprehesive studies on antifouling paint in Indonesia compared to other tropical countries. In this study, the evaluation of the performance for antifouling paint was carried out where anticorrosion  paint and bare steel were also studied as references. The measurement of corrosion rate on steel was conducted by weight loss method. The panels containing specimens were exposure up to 1-month for immersion in different depth of sea up to 3 meters. Seawater parameters consisting of temperature, pH, salinity, conductivity and dissolved oxygen were measured as well as coating properties. The results showed both surfaces of anticorrosion paint and steel specimens covered by biofouling, but not on antifouling paint. There also is not much different in antifouling paint properties before and after exposure in various depth of sea. The reduction of thickness for antifouling paint is apparently predominant to be affected by sea current. The magnitude of corrosion rate on bare steel is almost the same in different depth of sea which took place due to the effect of dissolved oxygen and biofouling. In the future, the comparison of the paints perfomance all local regions is necessary to be conducted in all local regions of the Indonesia.

Keywords


1.     Peres, R.S., Armelin, E., Moreno-Martínez, J.A., Alemán, C. and Ferreira, C.A., "Transport and antifouling properties of papain-based antifouling coatings", Applied Surface Science,  Vol. 341, (2015), 75-85. DOI:10.1016/j.apsusc.2015.03.004
2.     Ytreberg, E., Bighiu, M.A., Lundgren, L. and Eklund, B., "Xrf measurements of tin, copper and zinc in antifouling paints coated on leisure boats", Environmental Pollution,  Vol. 213, (2016), 594-599. DOI: 10.1016/j.envpol.2016.03.029
3.     Hakim, M., Nugroho, B., Nurrohman, M., Suastika, I. and Utama, I., "Investigation of fuel consumption on an operating ship due to biofouling growth and quality of anti-fouling coating", in IOP Conference Series: Earth and Environmental Science, IOP Publishing. Vol. 339, No. 1, (2019), 012037. DOI: 10.1088/1755-1315/339/1/012037
4.     Priyotomo, G., "A short review of antifouling paint performance in tropical seawater of indonesia", Research & Development in Material Science,  Vol. 8, No. 4, (2018). DOI: 10.31031/rdms.2018.08.000695
5.     Schwindt, E., Gappa, J.L., Raffo, M.P., Tatián, M., Bortolus, A., Orensanz, J.M., Alonso, G., Diez, M.E., Doti, B. and Genzano, G., "Marine fouling invasions in ports of patagonia (argentina) with implications for legislation and monitoring programs", Marine Environmental Research,  Vol. 99, (2014), 60-68. DOI: 10.1016/j.marenvres.2014.06.006
6.     Lord, J.P., Calini, J.M. and Whitlatch, R.B., "Influence of seawater temperature and shipping on the spread and establishment of marine fouling species", Marine Biology,  Vol. 162, No. 12, (2015), 2481-2492. DOI:10.1007/s00227-015-2737-2
7.     Ferry, M., Wan Nik, W. and Mohd Noor, C.W., "The influence of seawater velocity to the corrosion rate and paint degradation at mild steel plate immersed in sea water", in Applied Mechanics and Materials, Trans Tech Publ. Vol. 554, (2014), 218-221. DOI: 10.4028/www.scientific.net/AMM.554.218
8.     Nuraini, L., Prifiharni, S., Priyotomo, G., Sundjono and Gunawan, H., "Evaluation of anticorrosion and antifouling paint performance after exposure under seawater surabaya–madura (suramadu) bridge", in AIP Conference Proceedings, AIP Publishing LLC. Vol. 1823, No. 1, (2017), 020101. DOI: 10.1063/1.4978174
9.     Turner, A., "Marine pollution from antifouling paint particles", Marine Pollution Bulletin,  Vol. 60, No. 2, (2010), 159-171. DOI: 10.1016/j.marpolbul.2009.12.004
10.   Almeida, E., Diamantino, T.C. and de Sousa, O., "Marine paints: The particular case of antifouling paints", Progress in Organic Coatings,  Vol. 59, No. 1, (2007), 2-20. DOI: 10.1016/j.porgcoat.2007.01.017
11.   Azemar, F., Faÿ, F., Réhel, K. and Linossier, I., "Development of hybrid antifouling paints", Progress in Organic Coatings,  Vol. 87, (2015), 10-19. DOI: 10.1016/j.porgcoat.2015.04.007
12.   Yebra, D.M., Kiil, S. and Dam-Johansen, K., "Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings", Progress in Organic Coatings,  Vol. 50, No. 2, (2004), 75-104. DOI: 10.1016/j.porgcoat.2003.06.001
13.   Farhat, N., Vrouwenvelder, J.S., Van Loosdrecht, M.C., Bucs, S.S. and Staal, M., "Effect of water temperature on biofouling development in reverse osmosis membrane systems", Water Research,  Vol. 103, (2016), 149-159. DOI: 10.1016/j.watres.2016.07.015
14.   Hermansyah, H., Atmadipoera, A.S., Prartono, T., Jaya, I. and Syamsudin, F., "Stratification and stability of seawater mass in sulawesi sea", International Journal of Sciences: Basic and Applied Research,  Vol. 36, No. 8, (2017), 36-44.
15.   Carteau, D., Vallée-Réhel, K., Linossier, I., Quiniou, F., Davy, R., Compère, C., Delbury, M. and Faÿ, F., "Development of environmentally friendly antifouling paints using biodegradable polymer and lower toxic substances", Progress in Organic Coatings,  Vol. 77, No. 2, (2014), 485-493. DOI: 10.1016/j.porgcoat.2013.11.012
16.   Liu, C., "Development of anti-fouling coating using in marine environment", International Journal of Environmental Monitoring and Analysis, Vol. 3, No. 5, (2015), 373. DOI: 10.11648/j.ijema.20150305.30
17.   Sundjono, S., Priyotomo, G., Nuraini, L. and Prifiharni, S., "Corrosion behavior of mild steel in seawater from northern coast of java and southern coast of bali, indonesia, Bandung Institute of Technology,  (2017). DOI: 10.5614/j.eng.technol.sci.2017.49.6.5
18.   Tiarks, F., Frechen, T., Kirsch, S., Leuninger, J., Melan, M., Pfau, A., Richter, F., Schuler, B. and Zhao, C.-L., "Formulation effects on the distribution of pigment particles in paints", Progress in Organic Coatings,  Vol. 48, No. 2-4, (2003), 140-152. DOI: 10.1016/S0300-9440(03)00095-X
19.   Jaić, M. and Palija, T., "High gloss finish: The impact of surface roughness on gloss", Zaštita Materijala,  Vol. 56, No. 4, (2015), 457-462. DOI :10.5937/zasmat1504457j
20.   Bressy, C. and Lejars, M., "Marine fouling: An overview", The Journal of Ocean Technology,  Vol. 9, No. 4, (2014), 19-28.
21.   Rodriguez, S.G.S., Sithole, N., Dhakal, N., Olive, M., Schippers, J.C. and Kennedy, M.D., "Monitoring particulate fouling of north sea water with sdi and new astm mfi0. 45 test", Desalination,  Vol. 454, (2019), 10-19. DOI: 10.1016/j.desal.2018.12.006
22.   Suriani, M., Ramlan, S. and Nik, W.W., "Antifouling properties of zinc nitrate in seawater", International Journal of Chemical Engineering and Applications,  Vol. 7, No. 5, (2016), 314. DOI: 10.18178/ijcea.2016.7.5.596
23.   Rachman, H.A., Hendrawan, I.G. and Putra, I.D.N.N., "Studi transpor sedimen di teluk benoa menggunakan pemodelan numerik", Jurnal Kelautan: Indonesian Journal of Marine Science and Technology,  Vol. 9, No. 2, (2016), 144-154. DOI: 10.21107/jk.v9i2.1617
24.   Breitburg, D., Levin, L.A., Oschlies, A., Grégoire, M., Chavez, F.P., Conley, D.J., Garçon, V., Gilbert, D., Gutiérrez, D. and Isensee, K., "Declining oxygen in the global ocean and coastal waters", Science,  Vol. 359, No. 6371, (2018). DOI : 10.1126/science.aam7240
25.   Leidonald, R., Muhtadi, A., Lesmana, I., Harahap, Z. and Rahmadya, A., "Profiles of temperature, salinity, dissolved oxygen, and ph in tidal lakes", in IOP Conference Series: Earth and Environmental Science, IOP Publishing. Vol. 260, No. 1, (2019), 012075. DOI: 10.1088/1755-1315/260/1/012075
26.   Jaud, T., Dragon, A.-C., Garcia, J.V. and Guinet, C., "Relationship between chlorophyll a concentration, light attenuation and diving depth of the southern elephant seal mirounga leonina", PLoS one,  Vol. 7, No. 10, (2012), e47444. DOI: 10.1371/journal.pone.0047444
27.   Sauerheber, R. and Heinz, B., "Temperature effects on conductivity of seawater and physiologic saline, mechanism and significance", Chemical Sciences Journal, Vol. 6, No. 4, (2016), 1-5. DOI: 10.4172/2150-3494.1000109
28.   Doble, M., "Polymers in a marine environment, Smithers Rapra,  (2014).
29.   Lanneluc, I., Langumier, M., Sabot, R., Jeannin, M., Refait, P. and Sablé, S., "On the bacterial communities associated with the corrosion product layer during the early stages of marine corrosion of carbon steel", International Biodeterioration & Biodegradation,  Vol. 99, (2015), 55-65. DOI: 10.1016/j.ibiod.2015.01.003
30.   Chen, C.-L., Maki, J.S., Rittschof, D. and Teo, S.L.-M., "Early marine bacterial biofilm on a copper-based antifouling paint", International Biodeterioration & Biodegradation,  Vol. 83, (2013), 71-76.
31.   Mieszkin, S., Callow, M.E. and Callow, J.A., "Interactions between microbial biofilms and marine fouling algae: A mini review", Biofouling,  Vol. 29, No. 9, (2013), 1097-1113. DOI: 10.1080/08927014.2013.828712
32.   Swain, G.W., Kovach, B., Touzot, A., Casse, F. and Kavanagh, C.J., "Measuring the performance of today's antifouling coatings", Journal of Ship Production,  Vol. 23, No. 3, (2007), 164.
33.   Atlar, M. and Callow, M., "The development of foul-release coatings for seagoing vessels", Journal of Marine Design and Operations, No. 4, (2003), 11-23.
34.   Takahashi, K., Release rate of biocides from antifouling paints, in Ecotoxicology of antifouling biocides. 2009, Springer.3-22. DOI: 10.1007/978-4-431-85709-9_1
35.   Lagerström, M., Lindgren, J.F., Holmqvist, A., Dahlström, M. and Ytreberg, E., "In situ release rates of cu and zn from commercial antifouling paints at different salinities", Marine Pollution Bulletin,  Vol. 127, No., (2018), 289-296. DOI: 10.1016/j.marpolbul.2017.12.027
36.   Amara, I., Miled, W., Slama, R.B. and Ladhari, N., "Antifouling processes and toxicity effects of antifouling paints on marine environment. A review", Environmental Toxicology and

 
 
 
 
 
Pharmacology,  Vol. 57, (2018), 115-130. DOI: 10.1016/j.etap.2017.12.001
37.   Chambers, L.D., Stokes, K.R., Walsh, F.C. and Wood, R.J., "Modern approaches to marine antifouling coatings", Surface and Coatings Technology,  Vol. 201, No. 6, (2006), 3642-3652. DOI: 10.1016/j.surfcoat.2006.08.129
38.   Kojima, R., Shibata, T. and Ueda, K., "Leaching phenomena of antifouling agents from ships’ hull paints", Journal of Shipping and Ocean Engineering , Vol. 6, No. 5, (2016).DOI: 10.17265/2159-5879/2016.05.002
39.   Laidlaw, F.B., "The history of the prevention of fouling", Marine Fouling and Its Preventionu, No. 580, (1952), 211–22.
40.   Ytreberg, E., Karlsson, J. and Eklund, B., "Comparison of toxicity and release rates of cu and zn from anti-fouling paints leached in natural and artificial brackish seawater", Science of the Total Environment,  Vol. 408, No. 12, (2010), 2459-2466. DOI: 10.1016/j.scitotenv.2010.02.036
41.   Al Tanto, T., Wisha, U.J., Kusumah, G., Pranowo, W.S., Husrin, S., Ilham, I. and Putra, A., "Karakteristik arus laut perairan teluk benoa–bali", Geomatika,  Vol. 23, No. 1, (2017), 37-48. DOI: 10.24895/jig.2017.23-1.631
42.   Fay, F., Linossier, I., Peron, J.J., Langlois, V. and Vallee-Rehel, K., "Antifouling activity of marine paints: Study of erosion", Progress in Organic Coatings,  Vol. 60, No. 3, (2007), 194-206. DOI: 10.1016/j.porgcoat.2007.07.027
43.   Rachmat, B. and Ilahude, D., "Estimation of sea current energy potential by using calculation models of horizontal axis current turbine in toyapakeh strait, nusa penida, bali", Bulletin of the Marine Geology,  Vol. 32, No. 2, (2018). DOI: 10.32693/bomg.32.2.2017.352
44.   Khavasfar, A., Moayed, M.H. and Jafari, A.H., "An investigation on the performance of an imidazoline based commercial corrosion inhibitor on CO2 corrosion of mild steel", International Journal of Engineering, Transactions A: Basics,  Vol. 20, No. 1, (2007), 35-44.
45.   Lagerström, M., Ytreberg, E., Wiklund, A.-K.E. and Granhag, L., "Antifouling paints leach copper in excess–study of metal release rates and efficacy along a salinity gradient", Water Research,  Vol. 186, (2020), 116383. DOI: 10.1016/j.watres.2020.116383
46.   Wrange, A.-L., Barboza, F.R., Ferreira, J., Eriksson-Wiklund, A.-K., Ytreberg, E., Jonsson, P.R., Watermann, B. and Dahlström, M., "Monitoring biofouling as a management tool for reducing toxic antifouling practices in the baltic sea", Journal of Environmental Management,  Vol. 264, (2020), 110447. DOI: 10.1016/j.jenvman.2020.110447
47.   Shahrabi, T., Hosseini, M., Ghorbani, M. and Arshadi, M., "Synergistic influence of benzoate ions on inhibition of corrosion of mild steel in 0.5 m sulfuric acid by benzotriazole", International Journal of Engineering,  Vol. 16, No. 3, (2003), 255-264.
48.   Gu, Y., Yu, L., Mou, J., Wu, D., Xu, M., Zhou, P. and Ren, Y., "Research strategies to develop environmentally friendly marine antifouling coatings", Marine Drugs,  Vol. 18, No. 7, (2020), 371. DOI: 10.3390/MD18070371
49.   Mahmood, M., Suryanto, S., Al Hazza, M. and Haidera, F., "Developing of corrosion resistance nano copper oxide coating on copper using anodization in oxalate solution", International Journal of Engineering, C: Aspects, Vol. 31, No. 3, (2018), 450-455. DOI: 10.5829/ije.2018.31.03c.07