Synthesis and Characterization of TiO2/CuO/WO3 Ternary Composite and its Application as Photocatalyst

Document Type : Original Article


Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran


Photocatalytic removal of water and air pollution has received much attention today. Many photocatalysts based on semiconductors have been developed and used. Binary and even ternary composites have been developed to solve the drawback of semiconductors, including high band gaps and short life time of charge carriers. In this study, a three-component composite of TiO2/CuO/WO3 was synthesized by adding WO3 to TiO2/CuO. Their structural properties were evaluated by analyzes X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and diffusive reflectance spectra (DRS) and their performance by methylene orange dye removal. The results of XRD and SEM analysis showed purity and uniform distribution of elements. The combination of TiO2/10%CuO and 15%WO3 with band gap 2.66 eV showed the highest rate constant of dye removal (0.0301 min-1).


Bi, D. and Y. Xu, "Synergism between Fe2O3 and WO3 particles: Photocatalytic activity enhancement and reaction mechanism". Journal of Molecular Catalysis A: Chemical, Vol. 367, 103-107.
2.     Feng, C., S. Wang and B. Geng, "Ti (iv) doped WO3 nanocuboids: fabrication and enhanced visible-light-driven photocatalytic performance." Nanoscale, Vol. 3, No. 9, (2011), 3695-3699.
3.     Liu, Y., C. Xie, J. Li, T. Zou and D. Zeng, "New insights into the relationship between photocatalytic activity and photocurrent of TiO2/WO3 nanocomposite." Applied Catalysis A: General, Vol. 433, (2012), 81-87.
4.     Karácsonyi, É., L. Baia, A. Dombi, V. Danciu, K. Mogyorósi, L.C. Pop, G. Kovács, V. Coşoveanu, A. Vulpoi, S. Simon and Zs. Pap, "The photocatalytic activity of TiO2/WO3/noble metal (Au or Pt) nanoarchitectures obtained by selective photodeposition." Catalysis today, Vol. 208, (2013), 19-27.
5.     Zhuang, J., W. Dai, Q. Tian, Z. Li, L. Xie, J. Wang, P. Liu, X. Shi and D. Wang, "Photocatalytic degradation of RhB over TiO2 bilayer films: effect of defects and their location." Langmuir, Vol. 26, No. 12, (2010), 9686-9694. Doi: 10.1021/la100302m
6.     Reyes, C., J. Fernández, J. Freer, M.A. Mondac, C. Zaror, S. Malato and H.D. Mansill, "Degradation and inactivation of tetracycline by TiO2 photocatalysis." Journal of Photochemistry and Photobiology A: Chemistry, Vol. 184, No. 1-2, (2006), 141-146.
7.     Laoufi, N., D. Tassalit and F. Bentahar, "The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor." Global NEST Journal, Vol. 10, No. 3, (2008), 404-418.
8.     Kuo, W. and P. Ho, "Solar photocatalytic decolorization of dyes in solution with TiO2 film." Dyes and Pigments, Vol. 71, No. 3, (2006), 212-217.
9.     Ke, D., H. Liu, T. Peng, X. Liu and K. Dai, "Preparation and photocatalytic activity of WO3/TiO2 nanocomposite particles." Materials Letters, Vol. 62, No. 3, (2008), 447-450.
10.   Iliev, V., D. Tomova, S. Rakovsky, A. Eliyas and G. Li Puma, "Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation." Journal of Molecular Catalysis A: Chemical, Vol. 327, No. (1-2): (2010), 51-57.
11.   Li, X., F.B. Li, C.L. Yang and W.K. Ge, "Photocatalytic activity of WOx-TiO2 under visible light irradiation." Journal of Photochemistry and Photobiology A: Chemistry, Vol. 141, No. (2-3), (2001), 209-217.
12.   Sajjad, A.K.L., S. Shamaila, B. Tian, F. Chen and J. Zhang, "Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst." Journal of Hazardous Materials, Vol. 177, No. 1-3, (2010), 781-791.
13.   Kwon, Y.T., K.Y. Song, W.I. Lee, G.J. Choi and Y.R. Do, "Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction." Journal of Catalysis, Vol. 191, No. 1, (2000), 192-199.
14.   Leghari, S.A.K., S. Sajjad, F. Chen and J. Zhang, "WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst." Chemical Engineering Journal, Vol. 166, No. 3, (2011), 906-915.
15.   Lv, K., J. Li, X. Qing, W. Li and Q. Chen, "Synthesis and photo-degradation application of WO3/TiO2 hollow spheres." Journal of Hazardous Materials, Vol. 189, No. 1-2, (2011), 329-335.
16.   Koohestani, H., "Characterization of TiO2/WO3 composite produced with recycled WO3 nanoparticles from W-Ni-Fe alloy." Materials Chemistry and Physics, Vol. 229, (2019), 251-256.
17.   Koohestani, H. and S.K. Sadrnezhaad, "Improvement in TiO2 photocatalytic performance by ZrO2 nanocompositing and immobilizing." Desalination and Water Treatment, Vol. 57, No. 58, (2016), 28450-28459. DOI: 10.1080/19443994.2016.1183233
18.   Papp, J., B. Podolsky, and N. Rosen, "Surface acidity and photocatalytic activity of TiO2, WO3/TiO2, and MoO3/TiO2 photocatalysts." Chemistry of Materials, Vol. 6, No. 4, (1994), 496-500. DOI: 10.1021/cm00040a026
19.   Sajjad, A.K.L., S. Shamaila, B. Tian, F. Chen and J. Zhang, "One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity." Applied Catalysis B: Environmental, Vol. 91, No. 1-2, (2009), 397-405.
20.   Ramos-Delgado, N., L. Hinojosa-Reyes, I.L. Guzman-Mar, M.A. Gracia-Pinilla and A. Hernández-Ramírez, "Synthesis by sol-gel
of WO3/TiO2 for solar photocatalytic degradation of malathion pesticide." Catalysis Today, Vol. 209, (2013), 35-40.
21.   Scuderi, V., G. Amiard, R. Sanz, S. Boninelli, G. Impellizzeri and V. Privitera, "TiO2 coated CuO nanowire array: Ultrathin p–n heterojunction to modulate cationic/anionic dye photo-degradation in water." Applied Surface Science, Vol. 416, (2017), 885-890.
22.   Sawicka-Chudy, P., M. Sibiński, G. Wisz, E. Rybak-Wilusz and M. Cholewa, "Numerical analysis and optimization of Cu2O/TiO2, CuO/TiO2, heterojunction solar cells using SCAPS." Journal of Physics: Conference Series. (2018). IOP Publishing.
23.   Zhang, X. and A. Tang, "Novel CuO/TiO2 nanocomposite films with a graded band gap for visible light irradiation." Materials Express, Vol. 2, No. 3, (2012), 238-244.
24.   Koohestani, H. and A. Kheilnejad, "Hydrogen Generation and Pollution Degradation from Wastewater Using TiO2-CuO Nanocomposite." Journal of Nanoscience and Nanotechnology, Vol. 20, No. 9, (2020), 5970-5975.
25.   Koohestani, H. and S.K. Sadrnezhaad, "Photocatalytic degradation of methyl orange and cyanide by using TiO2/CuO composite." Desalination and Water Treatment, Vol. 57, No. 46, (2016), 22029-22038.
26.   Miwa, T., S. Kaneco, H. Katsumata, T. Suzuki, K. Ohta, S. Chand Verma and K. Sugihara, "Photocatalytic hydrogen production from aqueous methanol solution with CuO/Al2O3/TiO2 nanocomposite." International Journal of Hydrogen Energy, Vol. 35, No. 13, (2010), 6554-6560.
27.   Yanyan, L., T.A. Kurniawan. Z. Ying, A.B. Albadarin and G. Walker, "Enhanced photocatalytic degradation of acetaminophen from wastewater using WO3/TiO2/SiO2 composite under UV-vis irradiation." Journal of Molecular Liquids, Vol. 243, (2017), 761-770.
28.   Li, Z., F. Cao, L. Wang, Z. Chen and X. Ji, "A novel ternary MoS2/MoO3/TiO2 composite for fast photocatalytic degradation of rhodamine B under visible-light irradiation." New Journal of Chemistry, Vol. 44, No. 2, (2020), 537-542.
29.   Akhlaghian, F. and A. Najafi, "CuO/WO3/TiO2 photocatalyst for degradation of phenol wastewater." Scientia Iranica, Vol. 25, No. 6, (2018), 3345-3353.
30.   Xu, Y. and M.A. Schoonen, "The absolute energy positions of conduction and valence bands of selected semiconducting minerals." American Mineralogist, Vol. 85, No. 3-4, (2000), 543-556.
31.   Lebedev, V., V.V. Sudin, D.A. Kozlov and A.V. Garshev, "Photocatalytic properties of nanocrystalline TiO2 modified with CuO and WO3." Nanotechnologies in Russia, Vol. 11, No. 1-2, (2016), 20-28. DOI: 10.1134/S1995078016010092
32.   Baia, L., E. Orbán, S. Fodor, B. Hampel, E.Z. Kedves, K. Saszet and I. Székely, "Preparation of TiO2/WO3 composite photocatalysts by the adjustment of the semiconductors' surface charge." Materials Science in Semiconductor Processing, Vol. 42, (2016), 66-71.