The Prediction of Stress and Strain Behaviors in Composite Gears using FEM

Document Type : Original Article


1 Department of Mechanical Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran

2 Department of Mechanical Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran.


Metal matrix composite (MMC) gears are used as a major component in the industry and are responsible for providing high-quality power transfer at high speeds. High quality, including high strength and impact-resistance, low brittleness, and long lifetime, is very important and needed in the industry. Gears are made of different materials, and, nowadays, researchers and industrialists have turned to designing, manufacturing, and using composite gears more than other gears due to their low weight, high hardness and strength, and better mechanical properties. In this research, the stress and strain behaviors are predicted in the composite gears made of aluminum silicon carbide with 3 different SIC volume fractions, namely 55 vol.%, 40 vol.%, and 30 vol.%, and with specifications of (Al45/SIC55, Al60/SIC40, and Al70/SIC30) and gears made of aluminum oxide with 3 different alumina weight fractions, namely 94 wt.%, 96 wt.%, and 99.5 wt.% to evaluate and compare the stress behavior due to different forces exerted on a single gear tooth in MMC gears. The Al45/SIC55 composite experienced the largest stress compared to other composites such as Al60/SIC40 and Al70/SIC30. The strain values (unlike the stress values) reduced with increasing in the volume fraction of the SIC reinforcement. Moreover, 94% aluminum oxide composite showed larger stress compared to 96% aluminum oxide and 99.5% aluminum oxide. The spur gear is designed and analyzed using SOLID WORKS and ANSYS Workbench softwares.


1.     Radzevich, S., Dudley’s Handbook of Practical Gear Design and Manufacture, (2012) CRC press.
2.     Mayuram, M., and Gopinath, K., Machine Design II, (2008) Indian Institute of Technology, Madras.
3.     Karthik, J. P., Sai, T. R., and Praneeth, S. S., "Design and Optimization of Metal Matrix Composite (MMC’S) Spur Gear", International Journal of Advanced Design & Manufacturing Technology, Vol. 9, No. 3, (2016), 49–56.
4.     Pawar, P. B., and Utpat, A. A., "Analysis of Composite Material Spur Gear Under Static Loading Condition", Materials Today: Proceedings, Vol. 2, Nos. 4–5, (2015), 2968–2974. doi:10.1016/j.matpr.2015.07.278
5.     Karl, U., Metal Matrix Composites: Custom-Made Materials for Automotive and Aerospace Engineering, (2006) Basics of Metal Matrix Composites, Wiley.
6.     Haghshenas, M., "Metal–Matrix Composites", Reference Module in Materials Science and Materials Engineering, (2016) Elsevier. doi:10.1016/b978-0-12-803581-8.03950-3
7.     Chawla, K. K., "Metal Matrix Composites", Composite Materials, (2012), 197–248. doi:10.1007/978-0-387-74365-3_6
8.     Singla, M., Deepak Dwivedi, D., Singh, L., and Chawla, V., "Development  of  Aluminium  Based  Silicon  Carbide  Particulate Metal Matrix Composite", Journal of Minerals & Materials Characterization & Engineering, Vol. 8, No. 6, (2009), 455-467.
9.     Ganesan, N., and Vijayarangan, S., "A static analysis of metal matrix composite spur gear by three-dimensional finite element method", Computers and Structures, Vol. 46, No. 6, (1993), 1021–1027. doi:10.1016/0045-7949(93)90088-U
10.   Sharma, A., Aggarwal, M. L., and Singh, L., "Experimental investigation into the effect of noise and damping using composite spur gear", Materials Today: Proceedings, Vol. 4, No. 2, (2017), 2777–2782. doi:10.1016/j.matpr.2017.02.156
11.   Ratner, B., Hoffman, A., Schoen, F., and Lemons, J., Biomaterials Science: An Introduction to Materials in Medicine, (2004) Academic Press.
12.   Ishikawa, K., Matsuya, S., Miyamoto, Y., and Kawate, K., "Bioceramics", Comprehensive Structural Integrity, Vol. 9, (2007), 169–214. doi:10.1016/B0-08-043749-4/09146-1
13.   Kar, K., Composite Materials: Processing, Applications, Characterizations, (2016) Springer.
14.   Loos, M., "Composites", Carbon Nanotube Reinforced Composites: CNR Polymer Science and Technology, (2015), 37–72 Elsevier Inc. doi:10.1016/B978-1-4557-3195-4.00002-3
15.   Agnihotri, R., and Dagar, S., "Mechanical Properties of Al-SiC Metal Matrix Composites Fabricated by Stir Casting Route", Research in Medical & Engineering Sciences, Vol. 2, No. 5, (2017), 178–183. doi:10.31031/rmes.2017.02.000549
16.   Poovazhagan, L., Kalaichelvan, K., Rajadurai, A., and Senthilvelan, V., "Characterization of hybrid silicon carbide and boron carbide nanoparticles-reinforced aluminum alloy composites", Procedia Engineering, Vol. 64, (2013), 681–689. doi:10.1016/j.proeng.2013.09.143
17.   McKeen, L. W., "Pigments, Fillers, and Extenders", Fluorinated Coatings and Finishes Handbook, (2006), 59–76. doi:10.1016/b978-081551522-7.50008-x
18.   Park, S. J., and Seo, M. K., Element and Processing, Interface Science and Technology, Vol. 18, (2011) ,. doi:10.1016/B978-0-12-375049-5.00006-2
19.   Ebnesajjad, S., "Surface Treatment and Bonding of Ceramics", Surface Treatment of Materials for Adhesive Bonding, (2014), 283–299 Elsevier. doi:10.1016/b978-0-323-26435-8.00011-3
20.   Goldfarb, V., Trubachev, E., and Barmina, N., New Approaches to Gear Design and Production, Vol. 81, (2020) Cham, Springer International Publishing. doi:10.1007/978-3-030-34945-5
21.   Watson, H. J., "Methods of Manufacture", Modern Gear Production, (1970), 117–129 Elsevier. doi:10.1016/b978-0-08-015835-8.50010-9
22.   Monfared, V., Mondali, M., and Abedian, A., "Steady-state creep analysis of polymer matrix composites using complex variable method", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 227, No. 10, (2013), 2182–2194. doi:10.1177/0954406212473391
23.   Monfared, V., "A displacement based model to determine the steady state creep strain rate of short fiber composites", Composites Science and Technology, Vol. 107, (2015), 18–28. doi:10.1016/j.compscitech.2014.11.019
24.   Aswad, M. A., Awad, S. H., and Kaayem, A. H., "Study on Iraqi Bauxite ceramic reinforced aluminum metal matrix composite synthesized by stir casting", International Journal of Engineering, Transactions A: Basics, Vol. 33, No. 7, (2020), 1331–1339. doi:10.5829/IJE.2020.33.07A.20
25.   Mekonnen, B. Y., and Mamo, Y. J., "Tensile and flexural analysis of a hybrid bamboo/jute fiber-reinforced composite with polyester matrix as a sustainable green material for wind turbine blades", International Journal of Engineering, Transactions B: Applications, Vol. 33, No. 2, (2020), 314–319. doi:10.5829/IJE.2020.33.02B.16
26.   Vosough, M., Sharafi, S., and Khayati, G. R., "Co-tio2 nanoparticles as the reinforcement for fe soft magnetic composites with enhanced mechanical and magnetic properties via pulse electrodeposition", International Journal of Engineering, Transactions A: Basics, Vol. 33, No. 10, (2020), 2030–2038. doi:10.5829/IJE.2020.33.10A.21
27.   R., B., Al Madhani, M., and Al Madhani, R., "Study on Retrofitting of RC Column Using Ferrocement Full and Strip Wrapping", Civil Engineering Journal, Vol. 5, No. 11, (2019), 2472–2485. doi:10.28991/cej-2019-03091425
28.   Hanoon, A. N., Abdulhameed, A. A., Abdulhameed, H. A., and Mohaisen, S. K., "Energy Absorption Evaluation of CFRP-Strengthened Two-Spans Reinforced Concrete Beams under Pure Torsion", Civil Engineering Journal, Vol. 5, No. 9, (2019), 2007–2018. doi:10.28991/cej-2019-03091389
29.   Song, J.-H., Lee, E.-T., and Eun, H.-C., "Shear Strength of Reinforced Concrete Columns Retrofitted by Glass Fiber Reinforced Polyurea", Civil Engineering Journal, Vol. 6, No. 10, (2020), 1852–1863. doi:10.28991/cej-2020-03091587