Blast Demand Estimation of RC-Moment-Resisting Frames using a Proposed Multi-modal Adaptive Pushover Analysis Procedure

Document Type : Original Article


1 SJB Institute of Technology, Bangalore, Karnataka, India

2 Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology, Kerman, Iran


The procedure of estimating the RC moment-resisting frames under blast loading using a multi-mode adaptive pushover (MADP) analysis is investigated in the current study. The main advantage of the proposed procedure is the combination of the multi-mode and adaptive pushover analysis approaches, which has not been done in the past for blast loadings. To investigate the efficiency of the proposed approach, several RC moment-resisting frames (RC-MRFs) of the 4-, 8-, and 20- storey are considered in the study. For a better comparison, the conventional modal pushover analysis (MPA), nonlinear response history analysis (NRHA), and the proposed approach are considered in the simulations. To this end, various influential parameters including the lateral force, floor displacement, storey drift, storey drift ratio, etc. are considered. For all models, the first three mode shapes were considered in the analysis procedure, while for the case of 20 storey RC-MRF, the torsional effect is included as well. The results indicated that the proposed MADP procedure has adequate accuracy and efficiency to estimate the blast loading demand on RC-MRFs.


1.     Barros, R. C., and Almeida, R., "Pushover analysis of asymmetric three‚Äźdimensional building frames", Journal of Civil Engineering and Management, Vol. 11, No. 1, (2005), 3–12. doi:10.1080/13923730.2005.9636327
2.     Hamidia, M., Filiatrault, A., and Aref, A., "Simplified seismic sidesway collapse analysis of frame buildings", Earthquake Engineering & Structural Dynamics, Vol. 43, No. 3, (2014), 429–448. doi:10.1002/eqe.2353
3.     Kim, S., and D’Amore, E., "Push-over analysis procedure in earthquake engineering", Earthquake Spectra, Vol. 15, No. 3, (1999), 417–434. doi:10.1193/1.1586051
4.     Krawinkler, H., and Seneviratna, G. D. P. K., "Pros and cons of a pushover analysis of seismic performance evaluation", Engineering Structures, Vol. 20, Nos. 4–6, (1998), 452–464. doi:10.1016/S0141-0296(97)00092-8
5.     Ozturk, B., Eren Sahin, H., and Yildiz, C., "Seismic Performance Assessment of Industrial Structures in Turkey Using The Fragility Curves ",  In 15th World Conference on Earthquake Engineering, Lisbon, Portugal, (2012), 1–7, 1–7
6.     D’Ambrisi, A., De Stefano, M., and Tanganelli, M., "Use of pushover analysis for predicting seismic response of irregular buildings: A case study", Journal of Earthquake Engineering, Vol. 13, No. 8, (2009), 1089–1100. doi:10.1080/13632460902898308
7.     MacRae, G. A., "P-Δ Effects on Single-Degree-of-Freedom Structures in Earthquakes:", Earthquake Spectra, Vol. 10, No. 3, (1994), 539–568. doi:10.1193/1.1585788
8.     Bernal, D., "Instability of buildings during seismic response", Engineering Structures, Vol. 20, Nos. 4–6, (1998), 496–502. doi:10.1016/S0141-0296(97)00037-0
9.     Ibarra, L., "Collapse assessment of deteriorating SDOF systems", In Proceeding 12th European Conference on Earthquake Engineering, (2002), 9–13, 9–13
10.   Williamson, E. B., " Evaluation of Damage and P -Δ Effects for Systems Under Earthquake Excitation ", Journal of Structural Engineering, Vol. 129, No. 8, (2003), 1036–1046. doi:10.1061/(asce)0733-9445(2003)129:8(1036)
11.   Miranda, E., and Akkar, S. D., "Dynamic Instability of Simple Structural Systems", Journal of Structural Engineering, Vol. 129, No. 12, (2003), 1722–1726. doi:10.1061/(ASCE)0733-9445(2003)129:12(1722)
12.   Ibarra, L., and Krawinkler, H., "Variance of collapse capacity of SDOF systems under earthquake excitations", Earthquake Engineering & Structural Dynamics, Vol. 40, No. 12, (2011), 1299–1314. doi:10.1002/EQE.1089
13.   Brozovińć, M., and Dolšek, M., "Envelope-based pushover analysis procedure for the approximate seismic response analysis of buildings", Earthquake Engineering & Structural Dynamics, Vol. 43, No. 1, (2014), 77–96. doi:10.1002/eqe.2333
14.   Hasan, R., Xu, L., and Grierson, D. E., "Push-over analysis for performance-based seismic design", Computers and Structures, Vol. 80, No. 31, (2002), 2483–2493. doi:10.1016/S0045-7949(02)00212-2
15.   Manafpour, A. R., and Jalilkhani, M., "A Rapid Analysis Procedure for Estimating the Seismic Collapse Capacity of Moment Resisting Frames", Journal of Earthquake Engineering, (2019). doi:10.1080/13632469.2019.1583144
16.   Rahmani, A. Y., Bourahla, N., Bento, R., and Badaoui, M., "Adaptive upper-bound pushover analysis for high-rise moment steel frames", Structures, Vol. 20, (2019), 912–923. doi:10.1016/j.istruc.2019.07.006
17.   Carlos, J., Estimating Seismic Demands for Performance-Based Engineering of Buildings, Theses and Dissertations, UC Berkeley UC Berkeley Electronic. Retrieved from
18.   Sullivan, T. J., Saborio-Romano, D., O’Reilly, G. J., Welch, D. P., and Landi, L., "Simplified Pushover Analysis of Moment Resisting Frame Structures", Journal of Earthquake Engineering, (2018). doi:10.1080/13632469.2018.1528911
19.   Hall, J. F., "On the descending branch of the pushover curve for multistory buildings", Earthquake Engineering & Structural Dynamics, Vol. 47, No. 3, (2018), 772–783. doi:10.1002/eqe.2990
20.   Zhang, Q. W., Megawati, K., Huang, L. P., and Pan, T. C., "Evaluating the Efficiency of Current Nonlinear Static Pushover Procedures on Estimating Torsion Effect for Asymmetric High-Rise Buildings", Vulnerability, Uncertainty, and Risk, (2011), 881–888. doi:10.1061/41170(400)107
21.   Hassan, W. M., and Reyes, J. C., "Assessment of modal pushover analysis for mid-rise concrete buildings with and without viscous dampers", Journal of Building Engineering, Vol. 29, (2020), 101103. doi:10.1016/j.jobe.2019.101103
22.   Chopra, A., and Goel, R., (, January 1)A Modal Pushover Analysis Procedure to Estimate Seismic Demands for Buildings: Theory and Preliminary Evaluation, Pacific Earthquake Engineering Research Center, Report PEERNo. 2001/03, Retrieved from
23.   Chopra, A. K., and Goel, R. K., "A modal pushover analysis procedure for estimating seismic demands for buildings", Earthquake Engineering and Structural Dynamics, Vol. 31, No. 3, (2002), 561–582. doi:10.1002/eqe.144
24.   Goel, R. K., and Chopra, A. K., "Evaluation of Modal and FEMA Pushover Analyses: SAC Buildings", Earthquake Spectra, Vol. 20, No. 1, (2004), 225–254. doi:10.1193/1.1646390
25.   Goel, R. K., and Chopra, A. K.,. "Role of higher-"mode" pushover analyses in seismic analysis of buildings", Earthquake Spectra, Vol. 21, No. 4, (2005), 1027–1041, 1027–1041. doi:10.1193/1.2085189
26.   Bobadilla, H., and Chopra, A. K., "Modal pushover analysis for seismic evaluation of reinforced concrete special moment resisting frame buildings". Earthquake Engineering Research Center, University of California, (2007).
27.   Bobadilla, H., and Chopra, A. K., "Evaluation of the MPA Procedure for Estimating Seismic Demands: RC-SMRF Buildings", Earthquake Spectra, Vol. 24, No. 4, (2008), 827–845. doi:10.1193/1.2945295
28.   Humar, J. L., Dynamics of Structures. Prentice-Hall, Englewood Cliffs, New Jersey, 1990.
29.   Chopra, A. K., Dynamics of Structures. Prentice-Hall of India, NewDelhi, 1996.
30.   Clough, R. W., Penzien, J., Dynamics of Structures. McGraw- Hill, New York, 1993.
31.   Biggs, J. M., Introduction to Structural Dynamics. McGraw Hill Education, 2004.
32.   Connor, J. J., Introduction to Structural Motion Control. CRC Publications, 2000.
33.   Connor, J. J., Flame, S. L., Structural Motion Engineering. Springer, 2004."
34.   Chopra, A. K., Goel, R. K., and Chintanapakdee, C., "Evaluation of a Modified MPA Procedure Assuming Higher Modes as Elastic to Estimate Seismic Demands", Earthquake Spectra, Vol. 20, No. 3, (2004), 757–778. doi:10.1193/1.1775237
35.   Faal, H. N., and Poursha, M., "Applicability of the N2, extended N2 and modal pushover analysis methods for the seismic evaluation of base-isolated building frames with lead rubber bearings (LRBs)", Soil Dynamics and Earthquake Engineering, Vol. 98, (2017), 84–100. doi:10.1016/j.soildyn.2017.03.036
36.   Poursha, M., Khoshnoudian, F., and Moghadam, A. S., "A consecutive modal pushover procedure for estimating the seismic demands of tall buildings", Engineering Structures, Vol. 31, No. 2, (2009), 591–599. doi:10.1016/j.engstruct.2008.10.009
37.   Kalkan, E., and Chopra, A. K., "Evaluation of Modal Pushover–Based Scaling of One Component of Ground Motion: Tall Buildings", Earthquake Spectra, Vol. 28, No. 4, (2012), 1469–1493. doi:10.1193/1.4000091
38.   Pan, X., Zheng, Z., and Wang, Z., "Estimation of floor response spectra using modified modal pushover analysis", Soil Dynamics and Earthquake Engineering, Vol. 92, (2017), 472–487. doi:10.1016/j.soildyn.2016.10.024
39.   Reyes, J. C., and Chopra, A. K., "Three-dimensional modal pushover analysis of buildings subjected to two components of ground motion, including its evaluation for tall buildings", Earthquake Engineering and Structural Dynamics, Vol. 40, No. 7, (2011), 789–806. doi:10.1002/eqe.1060
40.   Reyes, J. C., and Chopra, A. K., "Evaluation of three-dimensional modal pushover analysis for unsymmetric-plan buildings subjected to two components of ground motion", Earthquake Engineering & Structural Dynamics, Vol. 40, No. 13, (2011), 1475–1494. doi:10.1002/eqe.1100
41.   Reyes, J. C., Riaño, A. C., Kalkan, E., and Arango, C. M., "Extending modal pushover-based scaling procedure for nonlinear response history analysis of multi-story unsymmetric-plan buildings", Engineering Structures, Vol. 88, (2015), 125–137. doi:10.1016/j.engstruct.2015.01.041
42.   Tehrani, M. H., and Khoshnoudian, F., "Extended consecutive modal pushover procedure for estimating seismic responses of one-way asymmetric plan tall buildings considering soil-structure interaction", Earthquake Engineering and Engineering Vibration, Vol. 13, No. 3, (2014), 487–507. doi:10.1007/s11803-014-0257-6
43.   Jalilkhani, M., Ghasemi, S. H., and Danesh, M., "A multi-mode adaptive pushover analysis procedure for estimating the seismic demands of RC moment-resisting frames", Engineering Structures, Vol. 213, (2020), 110528. doi:10.1016/j.engstruct.2020.110528
44.   Saedi Daryan, A., Soleimani, S., and Ketabdari, H., "A modal nonlinear  static  analysis  method  for  assessment  of   structures under blast loading", Journal of Vibration and Control, Vol. 24, No. 16, (2018), 3631–3640. doi:10.1177/1077546317708517
45.   Saedi-Daryan, A., Soleimani, S., and Hasanzadeh, M., "Extension of the Modal Pushover Analysis to Assess Structures Exposed to Blast  Load",  Journal  of  Engineering Mechanics, Vol. 144, No. 3,  (2018),  04018006.  doi:10.1061/(asce)em.1943-7889.0001417
46.   Kalkan, E., and Kunnath, S. K., "Adaptive Modal Combination Procedure for Nonlinear Static Analysis of Building Structures", Journal of Structural Engineering, Vol. 132, No. 11, (2006), 1721–1731. doi:10.1061/(asce)0733-9445(2006)132:11(1721)
47.   Antoniou, S., and Pinho, R., "Development and verification of a displacement-based adaptive pushover procedure", Journal of Earthquake Engineering, Vol. 8, No. 5, (2004), 643–661. doi:10.1142/S136324690400150X
48.   Gupta, B., and Kunnath, S. K., "Adaptive Spectra-Based Pushover Procedure for Seismic Evaluation of Structures", Earthquake Spectra, Vol. 16, No. 2, (2000), 367–391. doi:10.1193/1.1586117
49.   Papanikolaou, V. K., and Elnashai, A. S., "Evaluation of conventional and adaptive pushover analysis I: Methodology", Journal of Earthquake Engineering, Vol. 9, No. 6, (2005), 923–941. doi:10.1142/S1363246905002420
50.   Shakeri, K., Shayanfar, M. A., and Kabeyasawa, T., "A story shear-based adaptive pushover procedure for estimating seismic demands of buildings", Engineering Structures, Vol. 32, No. 1, (2010), 174–183. doi:10.1016/j.engstruct.2009.09.004
51.   Bhasker, R., and Menon, A., "Torsional irregularity indices for the seismic demand assessment of RC moment resisting frame buildings", Structures, Vol. 26, (2020), 888–900. doi:10.1016/j.istruc.2020.05.018
52.   Wang, Y. Bin, Liu, H. T., and Zhang, Z. Y., "Rotation spring: Rotation symmetric compression-torsion conversion structure with high space utilization", Composite Structures, Vol. 245, (2020), 112341. doi:10.1016/j.compstruct.2020.112341
53.   Amini, M. A., and Poursha, M., "Adaptive Force-Based Multimode Pushover Analysis for Seismic Evaluation of Midrise Buildings", Journal of Structural Engineering, Vol. 144, No. 8, (2018), 04018093. doi:10.1061/(asce)st.1943-541x.0002070
54.   "Chintanapakdee,C. Evaluations of the model pushover analysis procedure using vertical regular and irregular generic frames, PhD Dissertation, University of California at Berkeley; (2002).
55.   MathWorks, Inc., MATLAB: The language of technical computing. Desktop tools and development environment, version 14, (2005).
56.   Shojaeifar, H., Maleki, A., and Lotfollahi-Yaghin, M. A., "Performance evaluation of curved-TADAS damper on seismic response of moment resisting steel frame", International Journal of Engineering, Transactions A: Basics, Vol. 33, No. 1, (2020), 55–67. doi:10.5829/ije.2020.33.01a.07
57.   Menasri, Y., Nouaouria, M. S., and Brahimi, M., "Probabilistic Approach to the Seismic Vulnerability of Reinforced Concrete Frame Structures by the Development of Analytical Fragility Curves P A P E R I N F O", International Journal of Engineering, International Journal of Engineering, Transactions A: Basics, Vol. 30, No. 7, (2017), 945–954. doi:10.5829/ije.2017.30.07a.03