Titanium Dioxide Nanotubes Incorporated Bioactive Glass Nanocomposites: Synthesis, Characterization, Bioactivity Evaluation and Drug Loading

Document Type : Original Article


1 Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran

2 Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran


Nano bioactive glasses are known as suitable alternatives to repair the damaged bone tissues. In this research, novel sol-gel derived bioactive glass composites were synthesized through a reduction in the common weight percent of SiO2 substituted by 15 wt% of titanium dioxide nanotubes (TNTs) at two different steps by the synthetic procedure. The morphology, crystalline structure, and functional groups of the composites were evaluated through scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analyses. Based on the SEM images, the step in which TNTs were added to the solution completely changed the morphology of the composite. Bioactivity tests were carried out by soaking the samples in the simulated body fluid (SBF) at the intervals ­of 14 and 28 days followed by the investigation of hydroxyapatite (HA) layer formation on the surface of the samples. According to XRD peaks at 2-theta angle of around 31 and 40 degrees, it was found that the presence of titanium dioxide nanotubes improved bioactivity after 14 days of immersion and both 58S-TNT composites were more bioactive than 58S bioglass, while 58S bioactive glass possessed more intense peaks of HA after 28 days of immersion in SBF. Furthermore, the drug loading characteristic of the prepared composites was examined and the results showed that the addition of nanotubes improved the drug loading performance of bioactive composites containing TNTs up to 70% compared to the 58S bioglass with 37% drug loading.


1.     Chiu, L. L. Y., Chu, Z., Radisic, M., Mozafari, M., “Tissue Engineering, Reference Module in Materials Science and Materials Engineering”, Elsevier, (2017).
2.     Hasan, A., “Tissue Engineering for Artificial Organs: Regenerative Medicine, Smart Diagnostics and Personalized Medicine”, Vol. 2, Wiley, Weinheim, (2017).
3.     T. Gong, J. Xie, J. Liao, T. Zhang, S. Lin, Y. Lin, “Nanomaterials and bone regeneration”, Bone Research, Vol. 3, (2015), 1-7. doi: 10.1038/boneres.2015.29
4.     Maksimkin, A.V., Senatov, F.S., Anisimova, N.Y., Kiselevskiy, M.V., Zalepugin, D.Y., Chernyshova, I.V., Tilkunova, N.A. and Kaloshkin, S.D., "Multilayer porous UHMWPE scaffolds for bone defects replacement", Materials Science and Engineering: C,  Vol. 73, (2017), 366-372. doi: 10.1016/j.msec.2016.12.104
5.     Gao, C., Peng, S., Feng, P. and Shuai, C., "Bone biomaterials and interactions with stem cells", Bone Research,  Vol. 5, (2017), 1-33. doi: 10.1038/boneres.2017.59
6.     Kim, T., See, C.W., Li, X. and Zhu, D., "Orthopedic implants and devices for bone fractures and defects: Past, present and perspective", Engineered Regeneration,  Vol. 1, (2020), 6-18. doi: 10.1016/j.engreg.2020.05.003
7.     Shin, S. Y., Rios, H. F. Giannobile, W. V., Oh, T. -J., “Stem Cell Biology and Tissue Engineering in Dental Sciences”, in: Vishwakarma, A., Sharpe, P., Shi, S., Ramalingam, M. (Ed.), Academic Press, Boston, (2015), 459-469, (Chapter 36).
8.     Yoshida, R., Baron, S., Rodner, C. and Ferreira, J., “Biologics in Orthopaedic Surgery”, in: Mazzocca, A. D., Lindsay A. D. (Ed.), Elsevier, Philadelphia, (2019), 135-139, (Chapter 13).
9.     Shibuya, N. and Jupiter, D.C., "Bone graft substitute: Allograft and xenograft", Clinics in Podiatric Medicine and Surgery,  Vol. 32, No. 1, (2015), 21-34. doi: 10.1016/j.cpm.2014.09.011
10.   Nikolova, M.P. and Chavali, M.S., "Recent advances in biomaterials for 3D scaffolds: A review", Bioactive Materials,  Vol. 4, (2019), 271-292. doi: 10.1016/j.bioactmat.2019.10.005
11.   Diaz-Rodriguez, P., Sánchez, M. and Landin, M., "Drug-loaded biomimetic ceramics for tissue engineering", Pharmaceutics,  Vol. 10, No. 4, (2018), 272. doi: 10.3390/pharmaceutics10040272
12.   Bargavi, P., Ramya, R., Chitra, S., Vijayakumari, S., Riju Chandran, R., Durgalakshmi, D., Rajashree, P. and Balakumar, S., "Bioactive, degradable and multi-functional three-dimensional membranous scaffolds of bioglass and alginate composites for tissue regenerative applications", Biomaterials Science,  Vol. 8, No. 14, (2020), 4003-4025. doi: 10.1039/D0BM00714E
13.   Kaur, G., Pickrell, G., Sriranganathan, N., Kumar, V. and Homa, D., "Review and the state of the art: Sol–gel and melt quenched bioactive glasses for tissue engineering", Journal of Biomedical Materials Research Part B: Applied Biomaterials,  Vol. 104, No. 6, (2016), 1248-1275. doi: 10.1002/jbm.b.33443
14.   Rabiee, S.M., Nazparvar, N., Azizian, M., Vashaee, D. and Tayebi, L., "Effect of ion substitution on properties of bioactive glasses: A review", Ceramics International,  Vol. 41, No. 6, (2015), 7241-7251. doi: 10.1016/j.ceramint.2015.02.140
15.   Derhambakhsh, M., Novinrooz, J. and Tohidi, S.H., "Preparation and study of molecular structure of copper ions doped in a silica xerogel matrix", International Journal of Engineering, Transactions A: Basics,  Vol. 19, No. 1, (2006), 53-60.
16.   Zheng, K. and Boccaccini, A.R., "Sol-gel processing of bioactive glass nanoparticles: A review", Adv Colloid Interface Sci,  Vol. 249, (2017), 363-373. doi: 10.1016/j.cis.2017.03.008
17.   Nabian, N., Delavar, M., Rabiee, S.M. and Jahanshahi, M., "Quenched/unquenched nano bioactive glass-ceramics: Synthesis and in vitro bioactivity evaluation in ringer's solution with BSA", Chemical Industry and Chemical Engineering Quarterly,  Vol. 19., No. 2, (2013), 231-239. doi: 10.2298/CICEQ120323057N
18.   Vichery, C. and Nedelec, J.-M., "Bioactive glass nanoparticles: From synthesis to materials design for biomedical applications", Materials,  Vol. 9, No. 4, (2016), 288. doi: 10.3390/ma9040288
19.   Salinas, A.J. and Vallet-Regí, M., "Bioactive ceramics: From bone grafts to tissue engineering", RSC Advances,  Vol. 3, No. 28, (2013), 11116-11131. doi: 10.1039/C3RA00166K
20.   Wu, C. and Xiao, Y., "Article commentary: Evaluation of the in vitro bioactivity of bioceramics", Bone and Tissue Regeneration Insights,  Vol. 2, (2009), 25-29. doi: 10.4137/BTRI.S3188
21.   Saebnoori, e. and vali, I., "Surface activation of niti alloy by using electrochemical process for biomimetic deposition of hydroxyapatite coating", International Journal of Engineering, Transactions A: Basics,  Vol. 27, No. 10, (2014), 1627-1634. doi: 10.5829/idosi.ije.2014.27.10a.17
22.   Kokubo, T. and Takadama, H., "How useful is SBF in predicting in vivo bone bioactivity?", Biomaterials,  Vol. 27, No. 15, (2006), 2907-2915. doi: 10.1016/j.biomaterials.2006.01.017
23.   Sorrell, C.C., Saeri, M.R., Ehsani, N., Afshar, A. and Ghorbani, M., "Interface characterization of plasma sprayed hydroxyapatite coat on Ti 6Al 4V ", International Journal of Engineering, Transactions B: Applications,  Vol. 15, No. 2, (2002), 173-182.
24.   Abbaspour, S. and Sadrnezhaad, S.K., "Loading drug on nanostructured Ti6Al4V-HA for implant applications", International Journal of Engineering, Transactions B: Applications,  Vol. 31, No. 8, (2018), 1159-1165. doi: 10.5829/ije.2018.31.08b.01
25.   Turkyilmaz, I., "Current concepts in dental implantology, IntechOpen,  (2015).
26.   Rubiana, M.M. and Luciano, P.S., "Drug delivery systems: Past, present, and future", Current Drug Targets,  Vol. 5, No. 5, (2004), 449-455. doi: 10.2174/1389450043345407
27.   Porter, J.R., Ruckh, T.T. and Popat, K.C., "Bone tissue engineering: A review in bone biomimetics and drug delivery strategies", Biotechnology Progress,  Vol. 25, No. 6, (2009), 1539-1560. doi: 10.1002/btpr.246
28.   Wu, P. and Grainger, D.W., "Drug/device combinations for local drug therapies and infection prophylaxis", Biomaterials,  Vol. 27, No. 11, (2006), 2450-2467. doi: 10.1016/j.biomaterials.2005.11.031
29.   Bavnhøj, C.G., Knopp, M.M., Madsen, C.M. and Löbmann, K., "The role interplay between mesoporous silica pore volume and surface area and their effect on drug loading capacity", International Journal of Pharmaceutics: X,  Vol. 1, (2019), 100008. doi: 10.1016/j.ijpx.2019.100008
40.   Seok, H., Kim, S.-G., Kweon, H., Jo, Y.-Y., Lee, K.-G., Kang, T.Y., Chae, W.-S., Min, S.-K., Ahn, J.-H., Park, J.-W. and Choi, D.-J., "Comparison of different concentrations of tetracycline-loaded silk fibroin membranes on the guided bone regeneration in the rat calvarial defect model", Tissue Engineering and Regenerative Medicine,  Vol. 11, No. 6, (2014), 476-482. doi: 10.1007/s13770-014-9057-3
31.   Ni, S., Du, R. and Ni, S., "The influence of Na and Ti on the in vitro degradation and bioactivity in 58S sol-gel bioactive glass", Advances in Materials Science and Engineering,  Vol. 2012, No., (2012), 730810. doi: 10.1155/2012/730810
32.   Heidari, S., Hooshmand, T., Yekta, B.E., Tarlani, A., Noshiri, N. and Tahriri, M., "Effect of addition of titanium on structural, mechanical and biological properties of 45S5 glass-ceramic", Ceramics International,  Vol. 44, No. 10, (2018), 11682-11692. doi: 10.1016/j.ceramint.2018.03.245
33.   Aw, M.S., Khalid, K.A., Gulati, K., Atkins, G.J., Pivonka, P., Findlay, D.M. and Losic, D., "Characterization of drug-release kinetics in trabecular bone from titania nanotube implants", International Journal of Nanomedicine,  Vol. 7, (2012), 4883-4892. doi: 10.2147/IJN.S33655
34.   Hassanzadeh Nemati, N., Ghasempour, E. and Zamanian, A., "Effect of dual releasing of β-glycerophosphate and dexamethasone from Ti nanostructured surface for using in orthopedic applications", International Journal of Engineering, Transactions A: Basics,  Vol. 32, No. 10, (2019), 1337-1344. doi: 10.5829/ije.2019.32.10a.01
35.   Xia, W. and Chang, J., "Preparation and characterization of nano-bioactive-glasses (NBG) by a quick alkali-mediated sol–gel method", Materials Letters,  Vol. 61, No. 14, (2007), 3251-3253. doi: 10.1016/j.matlet.2006.11.048
36.   Taghian Dehaghani, M. and Ahmadian, M., "Fracture mechanism of CoCrMo porous nano-composite prepared by powder metallurgy route", International Journal of Engineering, Transactions A: Basics,  Vol. 31, No. 1, (2018), 19-24. doi: 10.5829/ije.2018.31.01a.03
37.   Andrade, A.L., Souza, D.M., Vasconcellos, W.A., Ferreira, R.V. and Domingues, R.Z., "Tetracycline and/or hydrocortisone incorporation and release by bioactive glasses compounds", Journal of Non-Crystalline Solids,  Vol. 355, No. 13, (2009), 811-816. doi: 10.1016/j.jnoncrysol.2009.01.015
38.   Gallinetti, S., Canal, C., Ginebra, M.-P. and Ferreira, J., "Development and characterization of biphasic hydroxyapatite/β-
TCP cements", Journal of the American Ceramic Society. American Ceramic Society,  Vol. 97, No. 4, (2014), 1065-1073. doi:10.1111/jace.12861
39.   Hu, W., Liu, H., Hao, H., Yao, Z., Cao, M., Wang, Z. and Song, Z., "Influence of Tio2 additive on the microwave dielectric properties of α-CaSiO3–Al2O3 ceramics", Ceramics International,  Vol. 41, (2015), 510-514. doi: 10.1016/j.ceramint.2015.03.138
40.   Zhu, W., Jiang, H., Sun, S., Jia, S. and Liu, Y., "Effect of Tio2 content on the crystallization behavior and properties of Cao-Al2O3-SiO2 glass ceramic fillers for high temperature joining application", Journal of Alloys and Compounds,  Vol. 732, (2018), 141-148. doi: 10.1016/j.jallcom.2017.10.166
41.   Letaïef, N., Lucas-Girot, A., Oudadesse, H., Dorbez-Sridi, R. and Boullay, P., "Investigation of the surfactant type effect on characteristics and bioactivity of new mesoporous bioactive glass in the ternary system SiO2–CaO–P2O5: Structural, textural and reactivity studies", Microporous and Mesoporous Materials,  Vol. 195, (2014), 102-111. doi: 10.1016/j.micromeso.2014.03.035
42.   Taloş, F., Senilă, M., Frentiu, T. and Simon, S., "Effect of titanium ions on the ion release rate and uptake at the interface of silica based Xerogels with simulated body fluid", Corrosion Science,  Vol. 72, (2013), 41-46. doi: 10.1016/j.corsci.2013.03.003
43.   Mezahi, F.Z., Oudadesse, H., Harabi, A., Lucas-Girot, A., Le Gal, Y., Chaair, H. and Cathelineau, G., "Dissolution kinetic and structural behaviour of natural Hydroxyapatite vs. Thermal treatment", Journal of Thermal Analysis and Calorimetry,  Vol. 95, No. 1, (2008), 21-29. doi: 10.1007/s10973-008-9065-4
44.   Mokhtari, H., Ghasemi, Z., Kharaziha, M., Karimzadeh, F. and Alihosseini, F., "Chitosan-58S bioactive glass nanocomposite coatings on TiO2 nanotube: Structural and biological properties", Applied Surface Science,  Vol. 441, (2018), 138-149. doi: 10.1016/j.apsusc.2018.01.314
45.   Sossa, P.A.F., Giraldo, B.S., Garcia, B.C.G., Parra, E.R. and Arango, P.J.A., "Comparative study between natural and synthetic hydroxyapatite: Structural, morphological and bioactivity properties", Matéria (Rio de Janeiro),  Vol. 23, No. 4, (2018). doi: 10.1590/s1517-707620180004.0551 
46.   Chen, J., Zeng, L., Chen, X., Liao, T. and Zheng, J., "Preparation and characterization of bioactive glass tablets and evaluation of bioactivity and cytotoxicity in vitro", Bioactive Materials,  Vol. 3, No. 3, (2018), 315-321. doi: 10.1016/j.bioactmat.2017.11.004
47.   Nabian, N., Jahanshahi, M. and Rabiee, S.M., "Synthesis of nano-bioactive glass–ceramic powders and its in vitro bioactivity study in bovine serum albumin protein", Journal of Molecular Structure,  Vol. 998, No. 1, (2011), 37-41. doi: 10.1016/j.molstruc.2011.05.002
48.   Zhao, L., Yan, X., Zhou, X., Zhou, L., Wang, H., Tang, J. and Yu, C., "Mesoporous bioactive glasses for controlled drug release", Microporous and Mesoporous Materials,  Vol. 109, No. 1, (2008), 210-215. doi: 10.1016/j.micromeso.2007.04.041
49.   Delavar, M., Bakeri, G., Hosseini, M. and Nabian, N., "Fabrication and characterization of polyvinyl chloride mixed matrix membranes containing high aspect ratio anatase titania and hydrous manganese oxide nanoparticle for efficient removal of heavy metal ions: Competitive removal study", The Canadian Journal of Chemical Engineering,  Vol. 98, No. 7, (2020), 1558-1579. doi: 10.1002/cjce.23725