Numerical Simulation of Frost Formation in Interrupted Micro Channel Heat Sinks Considering Microfluidic Effects in Slip Regime

Document Type : Original Article

Authors

Department of Mechanical Engineering, Faculty of Engineering, Arak University, Arak, Iran

Abstract

Frost formation is a renowned phenomenon in HVAC, aeronautical and refrigeration industries. In this paper, numerical modeling and parametric study of the frost formation in the interrupted Micro Channels Heat sinks (MCHS) is investigated considering microfluidic effects in slip flow regime. For numerical modeling, basic equations of humid air and frost including continuum, momentum, energy and phase change mechanism are numerically solved and results are compared with reported data. Knudsen number (Kn) is changed so that slip flow regime requirement is accomplished. This requirement is also considered for setting boundary conditions. The effect of different parameters like cold surface temperature, time and Kn are studied on the frost formation and details of the flow field. Results revealed that with an increase in time and a decrease in Kn and cold surface temperature, weight and thickness of the frost increase. Moreover, with thicker frost maximum flow velocity rises in the microchannel. The details of frost formation and flow field, revealed by the numerical results can remarkably assist designing interrupted microchannel.  

Keywords


1.     Hayashi, Y., Aoki, A., Adachi, S. and Hori, K., "Study of frost properties correlating with frost formation types", Journal of Heat Transfer, Vol. 99, (1977), 239-245. doi:10.1115/1.3450675.
2.     Aoki, K., Katayama, K. And Hayashi, Y., "A study on frost formation: The process of frost formation involving the phenomena of water permeation and freezing", Bulletin of JSME, Vol. 26, No. 211, (1983), 87-93. https://doi.org/10.1299/jsme1958.26.87.
3.     Tao, Y.-X., Besant, R. and Rezkallah, K., "Modeling of frost formation in a fibrous insulation slab and on an adjacent cold plate", International Communications in Heat and Mass Transfer,  Vol. 18, No. 5, (1991), 609-618. https://doi.org/10.1016/0735-1933(91)90074-E.
4.     Tao, Y.-X., Besant, R. and Rezkallah, K., "A mathematical model for predicting the densification and growth of frost on a flat plate", International Journal of Heat and Mass Transfer,  Vol. 36, No. 2, (1993), 353-363. https://doi.org/10.1016/0017-9310(93)80011-I.
5.     Lee, K.-S., Kim, W.-S. and Lee, T.-H., "A one-dimensional model for frost formation on a cold flat surface", International Journal of Heat and Mass Transfer,  Vol. 40, No. 18, (1997), 4359-4365. https://doi.org/10.1016/S0017-9310(97)00074-4.
6.     Lee, K.-S., Jhee, S. and Yang, D.-K., "Prediction of the frost formation on a cold flat surface", International Journal of Heat and Mass Transfer,  Vol. 46, No. 20, (2003), 3789-3796. https://doi.org/10.1016/S0017-9310(03)00195-9.
7.     Le Gall, R., Grillot, J. and Jallut, C., "Modelling of frost growth and densification", International Journal of Heat and Mass Transfer,  Vol. 40, No. 13, (1997), 3177-3187. https://doi.org/10.1016/S0017-9310(96)00359-6.
8.     Na, B. and Webb, R.L., "Mass transfer on and within a frost layer", International Journal of Heat and Mass Transfer,  Vol. 47, No. 5, (2004), 899-911. https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.023.
9.     Na, B. and Webb, R.L., "New model for frost growth rate", International Journal of Heat and Mass Transfer,  Vol. 47, No. 5, (2004), 925-936. https://doi.org/10.1016/j.ijheatmasstransfer.2003.09.001.
10.   Na, B. and Webb, R.L., "A fundamental understanding of factors affecting frost nucleation", International Journal of Heat and Mass Transfer,  Vol. 46, No. 20, (2003), 3797-3808. https://doi.org/10.1016/S0017-9310(03)00194-7.
11.   Yang, D.-K., Lee, K.-S. and Song, S., "Modeling for predicting frosting behavior of a fin–tube heat exchanger", International Journal of Heat and Mass Transfer,  Vol. 49, No. 7-8, (2006), 1472-1479. https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.022.
12.   Hermes, C.J., Piucco, R.O., Barbosa Jr, J.R. and Melo, C., "A study of frost growth and densification on flat surfaces", Experimental Thermal and Fluid Science,  Vol. 33, No. 2, (2009), 371-379. https://doi.org/10.1016/j.expthermflusci.2008.10.006.
13.   Kandula, M., "Frost growth and densification in laminar flow over flat surfaces", International Journal of Heat and Mass Transfer,  Vol. 54, No. 15-16, (2011), 3719-3731.https://doi.org/10.1016/j.ijheatmasstransfer.2011.02.056.
14.   Kandula, M., "Correlation of water frost porosity in laminar flow over flat surfaces", Special Topics & Reviews in Porous Media: An International Journal,  Vol. 3, No. 1, (2012), 79-87. DOI: 10.1615/SpecialTopicsRevPorousMedia.v3.i1.70
15.   Garimella, S., "Innovations in energy efficient and environmentally friendly space-conditioning systems", Energy,  Vol. 28, No. 15, (2003), 1593-1614. https://doi.org/10.1016/S0360-5442(03)00120-8.
16.   Shao, L.-L., Yang, L. and Zhang, C.-L., "Comparison of heat pump performance using fin-and-tube and microchannel heat exchangers under frost conditions", Applied Energy,  Vol. 87, No. 4, (2010), 1187-1197. https://doi.org/10.1016/j.apenergy.2009.08.021.
17.   Moallem, E., Padhmanabhan, S., Cremaschi, L. and Fisher, D.E., "Experimental investigation of the surface temperature and water retention effects on the frosting performance of a compact microchannel heat exchanger for heat pump systems", International Journal of Refrigeration,  Vol. 35, No. 1, (2012), 171-186. https://doi.org/10.1016/j.ijrefrig.2011.08.010.
18.   Moallem, E., Cremaschi, L., Fisher, D.E. and Padhmanabhan, S., "Experimental measurements of the surface coating and water retention effects on frosting performance of microchannel heat exchangers for heat pump systems", Experimental Thermal and Fluid Science,  Vol. 39, No., (2012), 176-188. https://doi.org/10.1016/j.expthermflusci.2012.01.022.
19.   Xia, Y., Zhong, Y., Hrnjak, P.S. and Jacobi, A.M., "Frost, defrost, and refrost and its impact on the air-side thermal-hydraulic performance of louvered-fin, flat-tube heat exchangers", International Journal of Refrigeration,  Vol. 29, No. 7, (2006), 1066-1079. https://doi.org/10.1016/j.ijrefrig.2006.03.005.
20.   Zhang, P. and Hrnjak, P.S., "Air-side performance of a parallel-flow parallel-fin (pf2) heat exchanger in sequential frosting", International Journal of Refrigeration,  Vol. 33, No. 6, (2010), 1118-1128. https://doi.org/10.1016/j.ijrefrig.2010.04.011.
21.   Tso, C., Cheng, Y. and Lai, A., "An improved model for predicting performance of finned tube heat exchanger under frosting condition, with frost thickness variation along fin", Applied Thermal Engineering,  Vol. 26, No. 1, (2006), 111-120. https://doi.org/10.1016/j.applthermaleng.2005.04.009.
22.   Wu, J., Ouyang, G., Hou, P. and Xiao, H., "Experimental investigation of frost formation on a parallel flow evaporator", Applied Energy,  Vol. 88, No. 5, (2011), 1549-1556. https://doi.org/10.1016/j.apenergy.2010.11.006.
23.   Xu, J., Gan, Y., Zhang, D. and Li, X., "Microscale heat transfer enhancement using thermal boundary layer redeveloping concept", International Journal of Heat and Mass Transfer,  Vol. 48, No. 9, (2005), 1662-1674. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.008.
24.   Xu, J., Song, Y., Zhang, W., Zhang, H. and Gan, Y., "Numerical simulations of interrupted and conventional microchannel heat sinks", International Journal of Heat and Mass Transfer,  Vol. 51, No. 25-26, (2008), 5906-5917. https://doi.org/10.1016/j.ijheatmasstransfer.2008.05.003.
25.   Cheng, Y., "Numerical simulation of stacked microchannel heat sink with mixing-enhanced passive structure", International Communications in Heat and Mass Transfer,  Vol. 34, No. 3, (2007), 295-303. https://doi.org/10.1016/j.icheatmasstransfer.2006.12.007.
26.   Chai, L., Xia, G., Zhou, M., Li, J. and Qi, J., "Optimum thermal design of interrupted microchannel heat sink with rectangular ribs in the transverse microchambers", Applied Thermal Engineering,  Vol. 51, No. 1-2, (2013), 880-889. https://doi.org/10.1016/j.applthermaleng.2012.10.037.
27.   Wong, K.-C. and Lee, J.-H., "Investigation of thermal performance of microchannel heat sink with triangular ribs in the transverse microchambers", International Communications in Heat and Mass Transfer,  Vol. 65, No., (2015), 103-110. https://doi.org/10.1016/j.icheatmasstransfer.2015.04.011.
28.   Hajmohammadi, M., Alipour, P. and Parsa, H., "Microfluidic effects on the heat transfer enhancement and optimal design of microchannels heat sinks", International Journal of Heat and Mass Transfer,  Vol. 126, No., (2018), 808-815. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.037.
29.          Topçuoğlu, K., "Trombe wall application with heat storage tank", Civil Engineering Journal,  Vol. 5, No. 7, (2019), 1477-1489. DOI: 10.28991/cej-2019-03091346.