Study on Equal Channel Angular Pressing Process of AA7075 with Copper Casing by Finite Element-response Surface Couple Method

Document Type : Original Article


Mechanical Engineering Department, Urmia University, Urmia, Iran


Equal channel angular pressing (ECAP) process of AA7075 billet with the copper casing is comprehensively investigated. Firstly, ECAP process is simulated based on finite element method (FEM) in ABAQUS software and then is verified in comparison to the experimental data. The design of experiments using response surface methodology (RSM) is performed in order to investigate the processing parameters. The main effect of four considered parameters (channel angle, corner angle, friction coefficient and thickness of casing) on the maximum required force and strain was studied. Also, the regression models for estimating the maximum forming force and strain are represented in high reliability using analysis of variance (ANOVA). The results indicated that channel angle by 93.5% of contribution is the most effective parameter on the required forming force. It is concluded that the thickness of copper casing does not affect the forming force. Also, all terms of the presented regression model are effective on the strain value, according to the obtained results. Based on ANOVA results, channel and corner angel are the most effective parameters on the strain by 80 and 16% of the contribution, respectively. Also, the friction coefficient and the thickness of copper casing have almost no significant effects on the strain.


1.     Stráská, J., Janeček, M., Čížek, J., Stráský, J. and Hadzima, B., “Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX–ECAP)”, Materials Characterization, Vol. 94, (2014),  69-79. DOI: 10.1016/j.matchar.2014.05.013
2.     Rao, M.P., Sarma, V.S. and Sankaran, S., “Development of high strength and ductile ultra-fine grained dual phase steel with nano sized carbide precipitates in a V–Nb microalloyed steel”, Materials Science and Engineering: A, Vol. 568,  (2013), 171-175. DOI: 10.1016/j.msea.2012.12.084
3.     Shaarbaf, M. and Toroghinejad, M.R., “Nano-grained copper strip produced by accumulative roll bonding process”, Materials Science and Engineering: A, Vol. 473, (2008), 28-33. DOI: 10.1016/j.msea.2007.03.065
4.     Faraji, G., Yavari, P., Aghdamifar, S. and Mashhadi, M.M., “Mechanical and microstructural properties of ultra-fine grained AZ91 magnesium alloy tubes processed via multi pass tubular channel angular pressing (TCAP)”, Journal of Materials Science & Technology, Vol. 30, (2014), 134-138. DOI: 10.1016/j.jmst.2013.08.010
5.     Ravisankar, B., “Equal‐Channel Angular Pressing (ECAP)”, Handbook of Mechanical Nanostructuring, (2015), 277-297. DOI: 10.1002/9783527674947.ch13
6.     Osman, M., Zhang, D.T., Tong, Y.X., Zheng, Y.F. and Li, L., “3D FEM Simulation of multipass ECAP Ti-50.8% Ni at various temperatures”, In Advanced Materials Research, Vol. 1004, (2014), 1204-1210. DOI: 10.4028/
7.     Murashkin, M.Y., Sabirov, I., Kazykhanov, V.U., Bobruk, E.V., Dubravina, A.A. and Valiev, R.Z., “Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC”, Journal of Materials Science, Vol. 48, (2013), 4501-4509. DOI: 10.1007/s10853-013-7279-8
8.     Dumitru, F.D., Higuera-Cobos, O.F. and Cabrera, J.M., “ZK60 alloy processed by ECAP: Microstructural, physical mechanical characterization”, Materials Science and Engineering: A, Vol. 594, (2014),  32-39. DOI: 10.1016/j.msea.2013.11.050
9.     Zhao, X., Yang, X., Liu, X., Wang, C.T., Huang, Y. and Langdon, T.G., “Processing of commercial purity titanium by ECAP using a 90 degrees die at room temperature”, Materials Science and Engineering: A, Vol. 607, (2014), 482-489. DOI: 10.1016/j.msea.2014.04.014
10.   Goodarzy, M.H., Arabi, H., Boutorabi, M.A., Seyedein, S.H. and Najafabadi, S.H., “The effects of room temperature ECAP and subsequent aging on mechanical properties of 2024 Al alloy”,  Journal of Alloys and Compounds, Vol. 585, (2014), 753-759. DOI: 10.1016/j.jallcom.2013.09.202
11.   Mostaed, E., Fabrizi, A., Dellasega, D., Bonollo, F. and Vedani, M., “Microstructure, mechanical behavior and low temperature superplasticity of ECAP processed ZM21 Mg alloy” Journal of Alloys and Compounds, Vol. 638, (2015), 267-276. DOI: 10.1016/j.jallcom.2015.03.029
12.   Tang, L., Zhao, Y., Islamgaliev, R.K., Tsao, C.Y., Valiev, R.Z., Lavernia, E.J. and Zhu, Y.T., “Enhanced strength and ductility of AZ80 Mg alloys by spray forming and ECAP”, Materials Science and Engineering: A, Vol. 670, (2016), 280-291. DOI: 10.1016/j.msea.2016.06.031
13.   Safari, M. and Joudaki, J., “Effect of Temperature on Strength and Hardness in Multi-pass Equal Channel Angular Pressing (ECAP) of Aluminum Alloys”, Transactions of the Indian Institute of Metals, (2020), 1-9. DOI: 10.1007/s12666-020-01877-0
14.   Djavanroodi, F., Omranpour, B., Ebrahimi, M. and Sedighi, M., “Designing of ECAP parameters based on strain distribution uniformity”, Progress in Natural Science: Materials International, Vol. 22, (2012), 452-460. DOI: 10.1016/j.pnsc.2012.08.001
15.   Reihanian, M., Ebrahimi, R., Tsuji, N. and Moshksar, M.M., “Analysis of the mechanical properties and deformation behavior of nanostructured commercially pure Al processed by equal channel angular pressing (ECAP)”,  Materials Science and Engineering: A, Vol. 473, (2008), 189-194. DOI: 10.1016/j.msea.2007.04.075
16.   Mohammed Iqbal, U. and Senthil Kumar, V.S., “Modeling of twist extrusion process parameters of AA6082-T6 alloy by response surface approach”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 228, (2014), 1458-1468. DOI: 10.1177/0954405413519606
17.   Balta, B., Arici, A.A. and Yilmaz, M., “Optimization of process parameters for friction weld steel tube to forging joints”, Materials & Design, Vol. 103, (2016), 209-222. DOI: 10.1016/j.matdes.2016.04.072
18.   Hasannejad, S.J., Hasanzadeh, R., Doniavi, A. and Modanloo, V., “Finite element simulation analysis of laminated sheets in deep drawing process using response surface method”, The International Journal of Advanced Manufacturing Technology, Vol. 93, (2017),  3245-3259. DOI: 10.1007/s00170-017-0780-5
19.   Teimouri, R. and Ashrafi, H., “Optimization of Hydroforming Process for Deep Drawing of AA7075 Using Finite Element Simulation and Response Surface Methodology”, Transactions of the Indian Institute of Metals, Vol. 70, (2017),  2265-2275. DOI: 10.1007/s12666-017-1083-0
20.   Guo, Z. and Tang, W., “The limiting sheet diameter prediction model for cup-shaped part drawing process with diverse mould assemblage based on RSM”, In IOP Conference Series: Materials Science and Engineering, Vol. 191, No. 1, (April, 2017), IOP Publishing. DOI: 10.1088/1757-899X/191/1/012030
21.   Naseri, R., Kadkhodayan, M. and Shariati, M., “An experimental investigation of casing effect on mechanical properties of billet in ECAP process”, The International Journal of Advanced Manufacturing Technology, Vol. 90, (2017), 3203-3216. DOI: 10.1007/s00170-016-9658-1
22.   Shaeri, M.H., Djavanroodi, F., Sedighi, M., Ahmadi, S., Salehi, M.T. and Seyyedein, S.H., “Effect of copper tube casing on strain distribution and mechanical properties of Al-7075 alloy processed by equal channel angular pressing”, The Journal of Strain Analysis for Engineering Design, Vol. 48, (2013) 512-521. DOI: 10.1177/0309324713498234
23.   Manafi, B. and Saeidi, M., “Development of a novel severe plastic deformation method: friction stir equal channel angular pressing”, The International Journal of Advanced Manufacturing Technology, Vol. 86, (2016), 1367-1374. DOI: 10.1007/s00170-015-8305-6
24.   Teimouri, R. and Ashrafi, H., “Optimization of hydroforming process for deep drawing of AA7075 using finite element simulation and response surface methodology”, Transactions of the Indian Institute of Metals, Vol. 70, (2017), 2265-2275. DOI: 10.1007/s12666-017-1083-0
25.   Kazemian, M.E. and Gandjalikhan Nassab, S.A., “Thermodynamic Analysis and Statistical Investigation of Effective Parameters for Gas Turbine Cycle using the Response Surface Methodology”, International Journal of Engineering, Transactions B: Applications, Vol. 33, No. 5, (2020), 894-905. DOI: 10.5829/ije.2020.33.05b.22
26    Davarnejad, R., Pishdad, R. and Sepahvand, S., “Dye adsorption ON the blends of saffron petals powder with activated carbon: Response surface methodology”, International Journal of Engineering, Transactions C: Aspects, Vol. 31, No. 12, (2018), 2001-2008. DOI: 10.5829/ije.2018.31.12c.02
27.   Abbas, A.T., Taha, M.A., Ragab, A.E., El-Danaf, E.A. and Abd El Aal, M.I., “Effect of equal channel angular pressing on the surface roughness of solid state recycled aluminum alloy 6061 chips”, Advances in Materials Science and Engineering, (2017). DOI: 10.1155/2017/5131403
28.           Rashahmadi, S., Karimi, Y. and Hasanzadeh, R., “The Effects of Newmark Method Parameters on Errors in Dynamic Extended Finite Element Method Using Response Surface Method”, International Journal of Engineering, Transactions A: Basics, Vol. 31, No. 1, (2018) 50-57. DOI: 10.5829/ije.2018.31.01a.08