Experimental and Numerical Analysis of Permeability in Porous Media

Document Type: Original Article

Authors

1 Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

2 Department of Mechanical Engineering, Islamic Azad University, Damavand Branch, Damavand, Iran

3 Wood Science and Technology Department, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

4 Department of Mechanical and Instrumental Engineering, Academy of Engineering, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation

Abstract

Using scaffold microstructure for bone tissue graft has been widely considered. Among the several properties of a scaffold, permeability plays a prominent role in the transport of nutrients, oxygen, and minerals. It is a key parameter which comprises various geometrical features such as pore shape, pore size and interconnectivity, porosity, and specific surface area. The main aim of this research is to characterize the permeability of the scaffold microstructure in terms of different pore sizes and porosity. To this end, cylindrical geometries for pores were modeled and the permeability coefficient was calculated using velocity and pressure drop and employing Darcy’s law. The validation process of the numerical results was done by comparing with experimental data. In this regard, a simple experiment setup was presented based on the constant head method. Additionally, the scaffolds were built using Solid Freeform Fabrication (SFF) techniques. The results showed that increasing porosity leads to an increase in permeability. Moreover, the permeability increases as the pore size increases. Eventually, the reducing pore diameters have a significant effect on the flow and hence permeability (e.g., a 20% decrease in diameter yields a 76% decrease in permeability).

Keywords


1.     Polo-Corrales. L, Latorre-Esteves. M, and Ramirez-Vick. J. E, “Scaffold design for bone regeneration”, Journal of Nanoscience and Nanotechnology, Vol. 14, No. 1, (2014), 15-56, DOI: 10.1166/jnn.2014.9127
2.     Thavornyutikarn. B, Chantarapanich. N, Sitthiseripratip. K, Thouas. G. A, and Chen. Q, “Bone tissue engineering scaffolding: computer-aided scaffolding techniques”, Progress in Biomaterials., Vol. 3, (2014), 61-102, DOI: 10.1007/s40204-014-0026-7
3.     Dias. M. R, Fernandes. P. R, Guedes. J. M, and Hollister. S. J, “Permeability analysis of scaffolds for bone tissue engineering”, Journal of Biomechanics, Vol. 45, No. 6, (2012), 938-944, DOI: 10.1016/j.jbiomech.2012.01.019
4.     Chan. G, and Mooney. D. J, “New materials for tissue engineering: towards greater control over the biological response”, Trends in Biotechnology, Vol. 26, No. 7, (2008), 382-392, DOI: 10.1016/j.tibtech.2008.03.011
5.     Lemon. G, Reinwald. Y, White. L. J, Howdle. S. M, Shakesheff. K. M, and King. J. R, “Interconnectivity analysis of supercritical CO2-foamed scaffolds”, Computer Methods and Programs in Biomedicine, Vol. 106, No. 3, (2012), 139-149, DOI: 10.1016/j.cmpb.2010.08.010
6.     Ochoa. I, Sanz-Herrera. J. A, García-Aznar. J. M, Doblaré. M, Yunos. D. M, and Boccaccini. A. R, “Permeability evaluation of 45S5 Bioglass®-based scaffolds for bone tissue engineering”, Journal of Biomechanics, Vol. 42, No. 3, (2009), 257-260, DOI: 10.1016/j.jbiomech.2008.10.030
7.     Reinwald. Y, Johal. R. K, Ghaemmaghami. A. M, Rose. F. R. A. J, Howdle. S. M, and Shakesheff. K. M, “Interconnectivity and permeability of supercritical fluid-foamed scaffolds and the effect of their structural properties on cell distribution”, Polymer, Vol. 55, No. 1, (2014), 435-444, DOI: 10.1016/j.polymer.2013.09.041
8.     Viana. T, Biscaia. S, Almeida. H. A, and Bártolo. P. J, “Permeability evaluation of lay-down patterns and pore size of PCL scaffolds”, Procedia Engineering, Vol. 59, (2013), 255-262, DOI: 10.1016/j.proeng.2013.05.119
9.     Botchwey. E. A, Dupree. M. A, Pollack. S. R, Levine. E. M, and Laurencin. C. T, “Tissue engineered bone: Measurement of nutrient transport in three‐dimensional matrices”, Journal of Biomedical Materials Research Part A: An Official Journal of the Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, Vol. 67, No. 1, (2003), 357-367, DOI: 10.1002/jbm.a.10111
10.   Chan. B. P, and Leong. K. W, “Scaffolding in tissue engineering: general approaches and tissue-specific considerations”, European Spine Journal, Vol. 17, No. 4, (2008), 467-479, DOI: 10.1007/s00586-008-0745-3
11.   Pennella. F, Cerino. G, Massai. D, Gallo. D, Labate. G. F. D. U, Schiavi. A, Deriu. M. A, Audenino. A, and Morbiducci. U, “A survey of methods for the evaluation of tissue engineering scaffold permeability”, Annals of Biomedical Engineering, Vol. 41, No. 10, (2013), 2027-2041, DOI: 10.1007/s10439-013-0815-5
12.   Rakovsky. A, Gotman. I, Rabkin. E, and Gutmanas. E. Y, “β-TCP–polylactide composite scaffolds with high strength and enhanced permeability prepared by a modified salt leaching method”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 32, (2014), 89-98, DOI: 10.1016/j.jmbbm.2013.12.022
13.   Serpooshan. V, Quinn. T. M, Muja. N, and Nazhat. S. N, “Hydraulic permeability of multilayered collagen gel scaffolds under plastic compression-induced unidirectional fluid flow”, Acta Biomaterialia, Vol. 9, No. 1, (2013), 4673-4680, DOI: 10.1016/j.actbio.2012.08.031
14.   Sharma. B, and Elisseeff. J. H, “Engineering structurally organized cartilage and bone tissues”, Annals of Biomedical Engineering, Vol. 32, No. 1, (2004), 148-159, DOI: 10.1023/B:ABME.0000007799.60142.78
15.   Amirkhani. S, Bagheri. R, and Yazdi. A. Z, “Effect of pore geometry and loading direction on deformation mechanism of rapid prototyped scaffolds”, Acta Materialia, Vol. 60, No. 6-7, (2012), 2778-2789, DOI: 10.1016/j.actamat.2012.01.044
16.   Hollister. S. J, “Porous scaffold design for tissue engineering”, Nature Materials, Vol. 4, No. 7, (2005), 518-524, DOI: 10.1038/nmat1421
17.   Syahrom. A, Kadir. M. R. A, Abdullah. J, and Öchsner. A, “Permeability studies of artificial and natural cancellous bone structures”, Medical Engineering & Physics, Vol. 35, No. 6, (2013), 792-799, DOI: 10.1016/j.medengphy.2012.08.011
18.   Truscello. S, Kerckhofs. G, Van Bael. S, Pyka. G, Schrooten. J, and Van Oosterwyck. H, “Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study”, Acta Biomaterialia, Vol. 8, No. 4, (2012), 1648-1658, DOI: 10.1016/j.actbio.2011.12.021
19.   Gross. K. A, and Rodrı́guez-Lorenzo. L. M, “Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering”, Biomaterials, Vol. 25, No. 20, (2004), 4955-4962, DOI: 10.1016/j.biomaterials.2004.01.046
20.   Hutmacher. D. W, Schantz. J. T, Lam. C. X. F, Tan. K. C, and Lim. T. C., “State of the art and future directions of scaffold‐based bone engineering from a biomaterials perspective”, Journal of Tissue Engineering and Regenerative Medicine, Vol. 1, No. 4, (2007), 245-260, DOI: 10.1002/term.24
21.   Karageorgiou. V, and Kaplan. D, “Porosity of 3D biomaterial scaffolds and osteogenesis”, Biomaterials, Vol. 26, No. 27, (2005), 5474-5491, DOI: 10.1016/j.biomaterials.2005.02.002
22.   Murphy. C. M, Haugh. M. G, and O'brien. F. J, “The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering”, Biomaterials, Vol. 31, No. 3, (2010), 461-466, DOI: 10.1016/j.biomaterials.2009.09.063
23.   O’Brien. F. J, Harley. B. A, Yannas. I. V, and Gibson. L. J, “The effect of pore size on cell adhesion in collagen-GAG scaffolds”, Biomaterials, Vol. 26, No. 4, (2005), 433-441, DOI: 10.1016/j.biomaterials.2004.02.052
24.   Hollister. S. J, Liao. E. E, Moffitt. E. N, Jeong. C. G, and Kemppainen. J. M, “Defining design targets for tissue engineering scaffolds”, In Fundamentals of Tissue Engineering and Regenerative Medicine, (2009), 521-537, DOI: 10.1007/978-3-540-77755-7_38
25.   Grimm. M. J, and Williams. J. L, “Measurements of permeability in human calcaneal trabecular bone”, Journal of Biomechanics, Vol. 30, No. 7, (1997), 743-745, DOI: 10.1016/S0021-9290(97)00016-X
26.   Jones. A. C, Arns. C. H, Hutmacher. D. W, Milthorpe. B. K, Sheppard. A. P, and Knackstedt. M. A, “The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth”, Biomaterials, Vol. 30, No. 7, (2009), 1440-1451, DOI: 10.1016/j.biomaterials.2008.10.056
27.   Mitsak. A. G, Kemppainen. J. M, Harris. M. T, and Hollister. S. J, “Effect of polycaprolactone scaffold permeability on bone regeneration in vivo”, Tissue Engineering Part A, Vol. 17, No. 13-14, (2011), 1831-1839, DOI: 10.1089/ten.tea.2010.0560
28.   Sandino. C, Kroliczek. P, McErlain. D. D, and Boyd. S. K, “Predicting the permeability of trabecular bone by micro-computed tomography and finite element modeling”, Journal of Biomechanics, Vol. 47, No. 12, (2014), 3129-3134, DOI: 10.1016/j.jbiomech.2014.06.024
29.   Sell. S, Barnes. C, Simpson. D, and Bowlin. G, “Scaffold permeability as a means to determine fiber diameter and pore size of electrospun fibrinogen”, Journal of Biomedical Materials Research Part A: An Official Journal of the Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials and the Korean Society for Biomaterials, Vol. 85, No. 1, (2008), 115-126, DOI: 10.1002/jbm.a.31556
30.   Yang. X, Lu. T. J, and Kim. T, “An analytical model for permeability of isotropic porous media”, Physics Letters A, Vol. 378, No. 30-31, (2014), 2308-2311, DOI: 10.1016/j.physleta.2014.06.002
31.   Li. S, de Wijn. J. R, Li. J, Layrolle. P, and de Groot. K, “Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio”, Tissue Engineering, Vol. 9, Issue. 3, (2003), 535-548, DOI: 10.1089/107632703322066714
32.   Bear. J, “Dynamics of fluids in porous media”, Courier Corporation, (2013), ISBN-13: 978-0-486-65675-5
33.   Biswas. R, and Strawn. R. C, “Tetrahedral and hexahedral mesh adaptation for CFD problems”, Applied Numerical Mathematics, Vol. 26, No. 1-2, (1998), 135-151, DOI: 10.1016/S0168-9274(97)00092-5
34.   Reza Kashyzadeh. K, Farrahi. G. H, Shariyat. M, and Ahmadian. M. T, “Experimental and finite element studies on free vibration of automotive steering knuckle”, International Journal of Engineering. Transaction B: Applications, Vol. 30, No. 11, (2017), 1776-1783, DOI: 10.5829/ije.2017.30.11b.20
35.   Reza Kashyzadeh. K, “Effects of axial and multiaxial variable amplitude loading conditions on the fatigue life assessment of automotive steering knuckle”, Journal of Failure Analysis and Prevention, Vol. 20, (2020), 455-463, DOI: 10.1007/s11668-020-00841-w
36.   Farrahi. G. H, Reza Kashyzadeh. K, Minaei. M, Sharifpour. A, and Riazi. S, “Analysis of resistance spot welding process parameters effect on the weld quality of three-steel sheets used in automotive industry: experimental and finite element simulation”, International Journal of Engineering. Transaction A: Basics, Vol. 33, No. 1, (2020), 148-157, DOI: 10.5829/ije.2020.33.01a.17
37.   Andersson. L, Jones. A. C, Knackstedt. M. A, and Bergström. L, “Permeability, pore connectivity and critical pore throat control of expandable polymeric sphere templated macroporous alumina”, Acta Materialia, Vol. 59, No. 3, (2011), 1239-1248, DOI: 10.1016/j.actamat.2010.10.056
38.   O'Brien. F. J, Harley. B. A, Waller. M. A, Yannas. I. V, Gibson. L. J, and Prendergast. P. J, “The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering”, Technology and Health Care, Vol. 15, No. 1, (2007), 3-17, DOI: 10.3233/THC-2007-15102