The Comparison of Neutron Beams through 7Li(p,n) Reactions for the Design of a Thermal Neutron Radiography Facility using the MCNPX Code

Document Type : Original Article

Authors

1 Department of Electrical Engineering-Department of Physics, International Hellenic University, Kavala, Greece

2 Laboratory of Nuclear Technology, School of Engineering, ‘Democritus’ University of Thrace, Xanthi, Greece

Abstract

In this work, a comparison of six neutron beams was carried out using the MCNPX Monte Carlo code for thermal neutron radiography purposes. The necessary neutrons produced via the 7Li(p,n) reaction for 1 mA proton beam with energies 2.3, 2.5, 3, 4, 4.5, and 5 MeV. The design of the facility was governed from the purpose to achieve the maximum thermal neutron flux in the position of the investigated object. An extensive number of simulations were realized for every source under different conditions. The higher energy of proton beam provides higher intensity for the neutron source but at the same time, the produced spectrum shifted to the fast neutron area. Protons with energies from 2.3 to 3 MeV are more suitable when the thermal neutron content is the main issue of the facility design. Neutrons produced by proton beam in the energy range of 4–5 MeV provide higher thermal neutron fluxes at the cost of the thermal neutron content. The final choice is a compromise, between the thermal neutron content that can be tolerated, in combination with a workable thermal neutron flux.

Keywords


1.     Hawkesworth, M. R. “Neutron radiography. Equipment and methods.” Atomic Energy Review, Vol. 15, No. 2, (1977), 169–220. Retrieved from http://inis.iaea.org/Search/search.aspx?orig_q=RN:8343576
2.     Hardt, P. von der, and Röttger, H. Neutron radiography handbook: nuclear science and technology. Springer Science & Business Media, 2012.
3.     Fantidis, J. G. “The use of electron linac for high quality thermal neutron radiography unit.” Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 908, (2018), 361–366. https://doi.org/10.1016/j.nima.2018.08.114
4.     Pirouz, F., Najafpour, G., Jahanshahi, M., and Sharifzadeh Baei, M. “Plant-based calcium fructoborate as boron-carrying nanoparticles for neutron cancer therapy.” International Journal of Engineering, Transactions A: Basics, Vol. 32, No. 4, (2019), 460–466. https://doi.org/10.5829/ije.2019.32.04a.01
5.     Chichester, D. L., Simpson, J. D., and Lemchak, M. “Advanced compact accelerator neutron generator technology for active neutron interrogation field work.” Journal of Radioanalytical and Nuclear Chemistry, Vol. 271, No. 3, (2007), 629–637. https://doi.org/10.1007/s10967-007-0318-7
6.     Anderson, I. S., Andreani, C., Carpenter, J. M., Festa, G., Gorini, G., Loong, C. K., and Senesi, R. “Research opportunities with compact accelerator-driven neutron sources.” Physics Reports. Elsevier B.V. https://doi.org/10.1016/j.physrep.2016.07.007
7.     Fantidis, J. G. “A study of a transportable thermal neutron radiography unit based on a compact RFI linac.” Journal of Radioanalytical and Nuclear Chemistry, Vol. 293, No. 1, (2012), 95–101. https://doi.org/10.1007/s10967-012-1736-8
8.     Mashnik, S. G., Chadwick, M. B., Hughes, H. G., Little, R. C., MacFarlane, R. E., Waters, L. S., and Young, P. G. “7-Li(p,n) Nuclear Data Library for Incident Proton Energies to 150 MeV.” In Proceeding 2000 ANS/ENS International Meeting, Nuclear Applications of Accelerator Technology  (pp. 1–11). Retrieved from http://arxiv.org/abs/nucl-th/0011066
9.     Fantidis, J. G. “Beam shaping assembly study for BNCT facility based on a 2.5 MeV proton accelerator on Li target.” Journal of Theoretical and Applied Physics, Vol. 12, No. 4, (2018), 249–256. https://doi.org/10.1007/s40094-018-0312-1
10.   Bayanov, B., Belov, V., Kindyuk, V., Oparin, E., and Taskaev, S. “Lithium neutron producing target for BINP accelerator-based neutron source.” Applied Radiation and Isotopes, Vol. 61, No. 5, (2004),  817–821. https://doi.org/10.1016/j.apradiso.2004.05.032
11.   Bayanov, B., Kashaeva, E., Makarov, A., Malyshkin, G., Samarin, S., and Taskaev, S. “A neutron producing target for BINP accelerator-based neutron source.” Applied Radiation and Isotopes, Vol. 67, No. 7-8 SUPPL., (2009), S282–S284. https://doi.org/10.1016/j.apradiso.2009.03.076
12.   Da Silva, A. X., and Crispim, V. R. “Study of a neutron radiography system using 252Cf neutron source.” Radiation Physics and Chemistry, Vol. 61, No. 3, (2001), 515–517. https://doi.org/10.1016/S0969-806X(01)00318-8
13.   Fantidis, J. G., Nicolaou, G. E., and Tsagas, N. F. “A transportable neutron radiography system.” Journal of Radioanalytical and Nuclear Chemistry, Vol. 284, No. 2, (2010), 479–484. https://doi.org/10.1007/s10967-010-0502-z
14.   Fantidis, J. G., Bandekas, D. V., Constantinos, P., and Vordos, N. “Fast and thermal neutron radiographies based on a compact neutron generator.” Journal of Theoretical and Applied Physics, Vol. 6, No. 1, (2012), 1–8. https://doi.org/10.1186/2251-7235-6-20
15.   Hendricks, J. S., Mckinney, G. W., Waters, L. S., Roberts, T. L., Egdorf, H. W., Finch, J. P., Trellue, H. R., Pitcher, E. J., Mayo, D. R., Swinhoe, M. T., Lebenhaft, J. MCNPX extensions version 2.5. 0 (Report No. LA-UR-05-2675), 2005. Retrieved from https://mcnp.lanl.gov/pdf_files/la-ur-05-2675.pdf
16.   Mireshghi, M. “Simulation of a Neutron Detector for Real Time Imaging Applications.” International Journal of Engineering, Vol. 11, No. 4, (1998), 207–212. Retrieved from http://www.ije.ir/article_71214.html
17.   Atanackovic, J., Matysiak, W., Witharana, S., Dubeau, J., and Waker, A. J. “Measurements of neutron energy spectra from 7Li( p,n)7be reaction with bonner sphere spectrometer, nested Neutron spectrometer and ROSPEC.” Radiation Protection Dosimetry, Vol. 161, No. 1–4, (2014), 221–224. https://doi.org/10.1093/rpd/nct314
18.   Bakshi, A. K., Dawn, S., Suryanarayana, S. V., and Datta, D. “Spectrometry and dosimetry of neutron beams produced by 7Li (p,n) reactions in the proton energy range of 3–5 MeV.” Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 949, (2020), 162926. https://doi.org/10.1016/j.nima.2019.162926
19.   Allen, D. A., and Beynon, T. D. “A design study for an accelerator-based epithermal neutron beam for BNCT.” Physics in Medicine and Biology, Vol. 40, No. 5, (1995), 807–821. https://doi.org/10.1088/0031-9155/40/5/007
20.   Matysiak, W., Prestwich, W. V., and Byun, S. H. “Precise measurements of the thick target neutron yields of the 7Li(p,n) reaction.” Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 643, No. 1, (2011), 47–52. https://doi.org/10.1016/j.nima.2011.04.034
21.           Mildner, D. F. R., and Lamaze, G. P. “Neutron Transmission of Single-Crystal Sapphire.” Journal of Applied Crystallography, Vol. 31, No. 6, (1998), 835–840. https://doi.org/10.1107/S0021889898005846