Experimental Modeling and Evaluation Sediment Scouring in Riverbeds around Downstream in Flip Buckets

Document Type: Original Article


1 Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran

2 Department of Hydraulic Structures, Faculty of Water Science Engineering, Shahid Chamran University of Ahvaz, Ahwaz, Iran

3 Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Yuk Choi Road, Hung Hom, Kowloon, Hong Kong


Flip buckets are a common configuration for side channel spillways. Similar to other spillways, the flip bucket or ski jump has its disadvantages, among which the scour hole downstream due to the flip bucket jet is the most important. The structure safety and stability may be influenced by the scour holes generated at the downstream side of bucket type energy dissipators. This study has employed an experimental model in order to examine the sediment scour created at the end of flip bucket energy dissipators at various flow rates and tail water depths. A total of 45 experiments were performed under different conditions. The experimental invistigation was conducted at the hydraulic laboratory of Shahid Chamran University in Iran. The main objective of this research was to identify the maximum depth of sediment scour ( ) and the maximum distance of sediment scour hole ( ) from the structures. The results showed that the maximum depth of scour and its distance from the structure increased by increasing discharge. The results of experimental models show that, at the downstream depths ( ) of 0.2 and 0.3 m, the stack was formed by the scouring at the upstream side of the hole, and at a depth of 0.1 m, this stack was transferred to the area after the scour hole. This could be explained by the fact that at downstream depths of 0.2 and 0.3 m, the rolling flow moved from the bottom upwards in the opposite direction of the water flow and sequestrated the sediments upstream. According to Equation Mean Absolute Relative Error(MARE) proposed relation based on laboratory studies has MARE of about 34.2%.


  1. Aminoroayaie Yamini, O., S. Hooman Mousavi, M. R. Kavianpour, and Azin Movahedi. “Numerical Modeling of Sediment Scouring Phenomenon around the Offshore Wind Turbine Pile in Marine Environment.” Environmental Earth Sciences Vol. 77, No. 23, (2018), 776-787, Doi: 10.1007/s12665-018-7967-4.
  2. Ekeleme, Anthony Chibuzo, and Jonah C. Agunwamba. "Experimental Determination of Dispersion Coefficient in Soil." Emerging Science Journal, Vol.2, No. 4, (2018), 213-218.
  3. Ghorbani, Mortaza Ali, Majid Pasbani Khiavi, and Parya Ahmadi. “Investigation of Nonlinear Behavior of Concrete on Seismic Performance of an Arch Dam Using Finite Element Method.” Civil Engineering Journal, Vol 2, No. 6, (2016), 295-305. doi:10.28991/cej-2016-00000034.
  4. Emeka, Arinze Emmanuel, Agunwamba Jonah Chukwuemeka, and Mama Benjamin.Okwudili. “Deformation Behaviour of Erodible Soil Stabilized with Cement and Quarry Dust.” Emerging Science Journal, Vol 2, No. 6, (2018), 383. Doi: 10.28991/esj-2018-01157
  5. Ghodsi, Habibeh, and Ali Asghar Beheshti. "Evaluation of Harmony Search Optimization to Predict Local Scour Depth around Complex Bridge Piers." Civil Engineering Journal, Vol 4, No. 2, (2018), 402-412. Doi: 10.28991/cej-0309100.
  6. Bormann, N. E. and Julien, P. Y. Scour Downstream of Grade-Control Structures. Journal of Hydraulic Engineering, ASCE, Vol 131, No. 10, (1991), 898-908.
  7. Jafari, Seyed Reza, and Majid Pasbani Khiavi. “Parametric Study of the Modal Behavior of Concrete Gravity Dam by Using Finite Element Method.” Civil Engineering Journal, Vol 5, No. 12 (2019), 2614-2625. doi:10.28991/cej-2019-03091437.
  8. Mason, P.J. and Arumugan, K., Free jet scour below dams and flip bucket, Journal of Hydraulic Engineering, ASCE, Vol. 111, (1985). 220-235. Doi: 10.1061/(asce)0733-9429(1985)111:2(220)
  9. Amanian, N. and Urroz, G. E.. Design of Pre-excavated Scour Hole Below Flip-bucket Spillways. Proceedings of the 1993 ASCE National Conference on Hydraulic Engineering, San Francisco, (1993), 856-860.
  10. Stein, O. R., P. Y. Julien, and C. V. Alonso. "Mechanics of jet scour downstream of a headcut." Journal of Hydraulic Research, Vol 31, No. 6, (1993), 723-738. Doi: 10.1080/00221689309498814
  11. Al-Ani, Rami Raad Ahmed, and Basim Hussein Khudair Al-Obaidi. “Prediction of Sediment Accumulation Model for Trunk Sewer Using Multiple Linear Regression and Neural Network Techniques.” Civil Engineering Journal, Vol 5, No. 1, (2019), 82. Doi: 10.28991/cej-2019-03091227
  12. Cordier, Clémence, Killian Guyomard, Christophe Stavrakakis, Patrick Sauvade, Franz Coelho, and Philippe Moulin. “Culture of Microalgae with Ultrafiltered Seawater: A Feasibility Study.” SciMedicine Journal, Vol 2, No. 2, (2020), 56-62. doi: 10.28991/scimedj-2020-0202-2..
  13. Hoffmans, G. J., and H. J. Verheij. "Scour Manual Vol. 96, (1997).
  14. Khalifehei, Kamran, Gholamreza Azizyan, Mahmood Shafai-Bajestan, and Kwok-wing Chau. "Stability of A-Jack concrete block armors protecting the riverbeds." Ain Shams Engineering Journal, (2020). Doi: 10.1016/j.asej.2020.04.018.
  15. Ghodsian, M., Melville, B., Coleman, S., "Scour caused by rectangular impinging jet in cohesiveless beds", Proc. Third International Conference on scour and erosion, ICSE, Nov. (2006). 1-3, Amsterdam, The Netherlands.
  16. Juon, R., and W. H. Hager. Flip bucket without and with deflectors. Journal of Hydraulic Engineering, Vol 126, No. 11, (2000), 837-845. Doi: 10.1061/(asce)0733-9429(2000)126:11(837).
  17. Pagliara, Stefano, Willi H. Hager, and Hans-Erwin Minor. "Plunge pool scour in prototype and laboratory." In Proc., Int. Conf. Hydraulics of Dams and River Structures, 165-172. Lisse, the Netherlands: Balkema, 2004. Doi: 10.1201/b16994-24.
  18. O. A. Yamini, M. R. Kavianpour, and S. Hooman Mousavi. “Wave Run-up and Rundown on ACB Mats Under Granular and Geotextile Filters’ Condition.” Marine Georesources & Geotechnology Vol 36, No. 8, (2017), 895-906. doi:10.1080/1064119x.2017.1397068.
  19. Movahedi, Azin, M. R. Kavianpour, and O. Aminoroayaie Yamini. "Evaluation and modeling scouring and sedimentation around downstream of large dams." Environmental Earth Sciences, Vol 77, (2018), 1-17. Doi: 10.1007/s12665-018-7487-2.
  20. Khatsuria, Rajnikant M. Hydraulics of spillways and energy dissipators. CRC Press, (2004). Doi: 10.1201/9780203996980-24.
  21. Zhang, S., Pang, B., & Wang, G. A new formula based on computational fluid dynamics for estimating maximum depth of scour by jets from overflow dams. Journal of Hydroinformatics, (2014), Vol 16, No. 5, 1210-1226.
  22. Movahedi, Azin, Mohammadreza Kavianpour, and O. A. Yamini. "Experimental and numerical analysis of the scour profile downstream of flip bucket with change in bed material size." ISH Journal of Hydraulic Engineering, (2017), 1-15. Doi: 10.1080/09715010.2017.1398111.
  23. Aminoroayaie Yamini, O., S. H. Mousavi, and M. R. Kavianpour. “Experimental Investigation of Using Geo-Textile Filter Layer in Articulated Concrete Block Mattress Revetment on Coastal Embankment.” Journal of Ocean Engineering and Marine Energy, Vol 5, No. 2, (2019), 119-133. Doi: 10.1007/s40722-019-00133-y
  24. Gamil, Yaser, Ismail Bakar, and Kemas Ahmed. "Simulation and Development of Instrumental Setup to Be Used for Cement Grouting of Sand Soil." Emerging Science Journal, Vol. 1, No. 1, (2017), Doi: 10.28991/esj-2017-01112.
  25. Schoklitsch, A. “Scour downstream of falling jet.” Water, Vol 25, No 24, 341-343, (1932).
  26. Veronese, A. "Erosion de fond en aval d’une decharge." In IAHR, meeting for hydraulic works, Berlin. 1937.
  27. Damle, P.M., Venkatraman, C.P., and Desai, S. C., Evaluation of scour below ski-jump buckets of spillways, CWPRS Golden Jubilee Symposia, London (1966).
  28. Chee, S. P., and T. Kung. "Piletas de derrubio autoformadas." In 6th Latin American Congress of the International Association for Hydraulic Research, Bogota, Columbia, Paper D, Vol. 7. 1974.
  29. Chee, S. P., and P. V. Padiyar. "The stability of blocks subjected to plunging water jets." JAWRA Journal of the American Water Resources Association 5, No. 3, (1969), 57-63.
  30. Wu, C.M. (1973). Scour at  Downstream  End of Dams in Taiwan‖. In: International Symposium on River Mechanics, Bangkok, Thailand, Vol. I(A 13), 1-6.
  31. Martins, R., 1975. Scouring of rocky riverbeds by free-jet spillways. Water Power Dam Const. April (1975).
  32. Incyth, L. (1982). ―Estudio sobre modelo del aliviadero de la Presa Casa de Piedra, Informe Final‖. DOH-044–03-82, Ezeiza, Argentina.
  33. Azmathullah, H. M. Deo, M. C. Deolalikar, P. B. Neural Networks for Estimation of Scour Downstream of a Ski-Jump Bucket. Journal of Hydraulic Engineering, ASCE, Vol 117, No. 5, (2005), 579-594. Doi: 10.1061/(asce)0733-9429(2005)131:10(898)
  34. Chanson, H.and Yit-Haw T. "Physical modelling of breaking tidal bores: comparison with prototype data." Journal of Hydraulic Research, Vol 53, No. 2, (2015), 264-273. Doi: 10.1080/00221686.2014.989458 
  35. Theingi, Mya, Kay Thi Tun, and Nwe Nwe Aung. “Preparation, Characterization and Optical Property of LaFeO3 Nanoparticles via Sol-Gel Combustion Method.” SciMedicine Journal Vol 1, No. 3, (2019), 151–157, doi: 10.28991/scimedj-2019-0103-5.
  36. Jalili, Mehdi, Mohmad Reza Ghasemi, and Ali Reza Pifloush. “Stiffness and Strength of Granular Soils Improved by Biological Treatment Bacteria Microbial Cements.” Emerging Science Journal, Vol 2, No. 4, (2018), Doi: 10.28991/esj-2018-01146.
  37. Lim, S. Y., & Chin, C. O. Scour by circular wall jets with non-uniform sediments. Advances in hydro-science and engineering, Vol 1 (Part B), (1993), 1989-1994.
  38. Naghikhani, A., Noori, R., Sheikhian, H., Ghiasi, B.,  Estimation of the dimensions of the scour hole in downstream scour of  flip bucket jet with granular computing model, Scientific and Research Journal of Hydraulic, Vol. 9, No. 3, (2014), 45-60. Doi: 10.1007/s11269-016-1526-0.
  39. Mason, P.J., Effects of air entrainment on plunge pool scour. Journal of Hydraulic Engineering, Vol 115, No. 3, (1989) 385-399. Doi: 10.1061/(asce)0733-9429(1989)115:3(385).
  40. Sofrelec (1980) "Kandadji Dam, Niger, 3rd Phase Design Report," Society Frangaise d'Etudes et de Realisation d'Equipement Electriques, Paris, France, Feb., 1980.
  41. Jaeger,C.(1949). Technische Hydraulik (Technical Hydraulics). Birkhiiu-ser, Basel, Switzerland (in German).
  42. Yen, Ben Chie, ed. Channel flow resistance: centennial of Manning's formula. Water Resources Publication, 1989.
  43. Hartung, W. Die Kolkbildung hinter Uberstromen wehren im Hinblick auf eine beweglich Sturzbettgestaltung. Die Wasser Wirtschaft, Vol. 49, No. 1, (1959) 309-313 (in German).
  44. Ervine, D.A., Falvey, H.R., Whiters, W., Pressure fluctuations on Fplunge pool floors. Journal Hydraulic Research. Vol 35, No. 2, (1997). Doi: 10.1080/00221689709498430
  45. Castillo, L., Parametrical analysis of the ultimate scour and mean dynamic pressures at plunge pools. Workshop on Rock Scour due to High Velocity Jets (2002). École Polytechnique Fédérale de Lausanne.
  46. Melo, J. F., A. N. Pinheiro, and C. M. Ramos. "Forces on plunge pool slabs: Influence of joints location and width." Journal of Hydraulic Engineering 132.1 (2006): 49-60.
  47. Federspiel, Matteo Paolo Elia Antonio, E. F. R. Bollaert, and A. J. Schleiss. "Dynamic response of a rock block in a plunge pool due to asymmetrical impact of a high-velocity jet." In Proceedings of the 34th World Congress of the International Association for Hydro-Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, p. 2404. Engineers Australia, 2011.
  48. Castillo, L.G., Carrillo, J.M., Characterization of the dynamic actions and scour estimation downstream of a dam. In: Dam Protections against Overtopping and Accidental Leakage. CRC Press, (2015), 231–243. Doi: 10.1201/b18292-26.
  49. Fiorotto, V., Barjastehmaleki, S., Caroni, E., Stability analysis of plunge pool linings. Journal Hydraulic Engineering Vol. 10 No. 3 (2016) Doi: 10.1061/(ASCE)HY.1943-7900.0001175.
  50. Yamini, O. Aminoroayaie, M. R. Kavianpour, and Azin Movahedi. "Pressure distribution on the bed of the compound flip buckets." The Journal of Computational Multiphase Flows, Vol 7, No. 3, (2015), 181-194. Doi: 10.1260/1757-482x.7.3.181
  51. Yamini, O. A., Kavianpour, M. R., & Mousavi, S. H. Experimental investigation of parameters affecting the stability of articulated concrete block mattress under wave attack. Applied Ocean Research, Vol.64, (2017), 184-202, Doi: 10.1016/j.apor.2017.03.003