Effect of Mechanical Alloying and Sintering on Phase Transformation, Microstructural Evolution, Mechanical Properties and Density of Zr-Cr Alloy

Document Type : Original Article


Department of Materials Science and Engineering, Shahid Bahonar University of Kerman, Kerman, Iran


The purpose of present research was production ofZr-based alloy as the nuclear fuel cladding by mechanical alloying (MA) and sintering process. Firstly, Zr and Cr powders were mechanically alloyed to produce the refractory and hard Zr-10 wt% Cr alloy, and then, the powder mixtures were consolidated by press and following sintering at temperature of 800˚C min. The phase evolution, microstructural changes, microhardness, and density of the Zr-10 wt% Cr alloy were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness measurement, and the Archimedes method. The results showed that the MA increased the solid solubility of the immiscible powders of Cr and Zr; therefore, the Cr atoms were completely dissolved in the Zr lattice after 24 h of the milling time and the nanostructured Zr(Cr) solid solution was obtained with the high microhardness value of about 491 Hv. Also, the results of the density measurement indicated that the resulted density was close to 98% of the theoretical density.


1.     Zhang, X., Liu, S. G., Wang, S. H., Zhang, B., Zhang, X. Y., Ma, M. Z. and Liu, R. P., “Dynamic precipitation-induced simultaneous enhancement of the strength and plasticity of hot-rolled Zr–9Al alloy”, Journal of Alloys and Compounds, Vol. 829, (2020), 154577. DOI: https://doi.org/10.1016/j.jallcom.2020.154577
2.     Gault, B., Felfer, P. J., Ivermark, M., Bergqvist, H., Cairney, J. M. and Ringer, S. P., “Atom probe microscopy characterization of as quenched Zr-0.8 wt% Fe and Zr-0.15 wt% Cr binary alloys”, Materials Letters, Vol. 91, (2013), 63-66. DOI: https://doi.org/10.1016/j.matlet.2012.09.059
3.     Kuprin, А. S., Belous, V. А., Voyevodin, V. N., Bryk, V. V., Vasilenko, R. L., Ovcharenko, V. D., Reshetnyak, E. N., Tolmachova, G. N. and Vyugov, P. N., “Vacuum-arc chromium-based coatings for protection of zirconium alloys from the high-temperature oxidation in air”, Journal of Nuclear Materials, Vol. 465, (2015), 400-406. DOI: https://doi.org/10.1016/j.jnucmat.2015.06.016
4.     Ryabchikov, A. I., Kashkarov, E. B., Shevelev, A. E. and Syrtanov, M. S., “High-intensity chromium ion implantation into Zr-1Nb alloy”, Surface and Coatings Technology, Vol. 383, (2020), 125272. DOI: https://doi.org/10.1016/j.surfcoat.2019.125272
5.     Huang, M., Li, Y., Ran, G., Yang, Z. and Wang, P., “Cr-coated Zr-4 alloy prepared by electroplating and it’s in situ He+ irradiation behavior”, Journal of Nuclear Materials, Vol. 538, (2020), 152240. DOI: https://doi.org/10.1016/j.jnucmat.2020.152240
6.     Chen, K., Zeng, L., Li, Z., Chai, L., Wang, Y., Chen, L.Y. and Yu, H., “Effects of laser surface alloying with Cr on microstructure and hardness of commercial purity Zr”, Journal of Alloys and Compounds, Vol. 784, (2019), 1106-1112. DOI: https://doi.org/10.1016/j.jallcom.2019.01.097
7.     Prosviryakov, A. S., Bazlov, A. I. and Loginova, I. S., “Effect of Cu addition on microstructural evolution and hardening of mechanically alloyed Al−Ti−O in-situ composite”, Transactions of Nonferrous Metals Society of China, Vol. 30, No. 5, (2020), 1135-1147. DOI: https://doi.org/10.1016/S1003-6326(20)65284-0
8.     Akbari, G. H. and Taghian, M., “Behavior of Cu-Cr Powder Mixtures During Mechanical Alloying”, International Journal of Engineering, Transactions B: Applications, Vol. 23, No. 1, (2010), 69-76. DOI: 10.5829/IJE.2010.23.01B.05
9.     Mirvakili, S. A., Zakeri, M. and Yazdani Rad, R., “Effect of Chromium Content on Formation of (Mo1-x-Crx)Si2 Nanocomposite Powders via Mechanical Alloying”, International Journal of Engineering, Transactions C: Aspects, Vol. 25, No. 2, (2012), 99-104. DOI: 10.5829/IJE.2012.25.02C.02
10.   Suryanarayana, C. and Al-Joubori A. A., “Effect of initial composition on phase selection in Ni-Si powder blends processed by mechanical alloying”, Materials and Manufacturing Processes, Vol. 33, No. 8, (2018), 840-848. DOI: 10.1080/10426914.2017.1401714
11.   Akbari, G. H. and Khajesarvi, A., “Effect of Mo Addition on Nanostructured Ni50Al50 Intermetallic Compound Synthesized by Mechanical Alloying”, International Journal of Engineering, Transactions C: Aspects, Vol. 28, No. 9, (2015), 1328-1335. DOI: 10.5829/IJE.2015.28.09C.10
12.   Verdian, M. M., “Fabrication of supersaturated NiTi(Al) alloys by mechanical alloying”, Materials and Manufacturing Processes, Vol. 25, No. 12, (2010), 1437-1439. DOI: https://doi.org/10.1080/10426914.2010.501093
13.   Azazari khosroshahi, R., Abbasi Nargesi, F. and parvini ahmadi, N., “Synthesis of Nanostructure Ti-45Al-5Cr Alloy by Mechanical Alloying and Study the Effect of Cr Addition on Microstructure of TiAl Alloy”, International Journal of Engineering, Transactions A: Basics, Vol. 24, No. 2, (2011), 123-130. DOI: 10.5829/IJE.2011.24.02C.03
14.   Rahaei, M. B., Yazdani-Rad, R. and Kazemzadeh, A., “Synthesis and Characterization of Nanocrystalline Ni3Al Intermetallic during Mechanical Alloying Process”, International Journal of Engineering, Transactions C: Aspects, Vol. 25, No. 2, (2012), 89-98. DOI: 10.5829/IJE.2012.25.02C.01
15.   Kristl, M., Ban, I. and Gyergyek, S., “Preparation of Nanosized Copper and Cadmium Chalcogenides by Mechanochemical Synthesis”, Materials and Manufacturing Processes, Vol. 28, No. 9, (2013), 1009-1013. DOI: https://doi.org/10.1080/10426914.2013.811736
16.   Zhang, X., Li, Y., He, X., Sun, Y., Pang, S., Su, G., Liu, X., and Yang, Z., “Influence of Cr addition on microstructure and mechanical properties of Zr-based alloys corresponding to Zr-C-Cr system”, Journal of Alloys and Compounds, Vol. 640, (2015), 240-245. DOI: https://doi.org/10.1016/j.jallcom.2015.03.240
17.   Ali, F., Mehmood, M., Qasim, A. M., Ahmada, J., Rehman, N., Iqbal, M., and Qureshi, A. H., “Comparative study of the structure and corrosion behavior of Zr-20%Cr and Zr-20%Ti alloy films deposited by multi-arc ion plating technique”, Thin Solid Films, Vol. 564, (2014), 277-283. DOI: https://doi.org/10.1016/j.tsf.2014.05.041
18.   Massalski, T. B., Okamoto, H., Subramanian, P.R. and Kacprzak, L., Binary Alloy Phase Diagrams, ASM International, Ohio: Materials Park, 1990.
19.   Kumar, A. A., Patton, M. R., Hennek, J. W., Lee, S. Y. R., Alesio-Spina, G. D., Yang, X., Kanter, J., Shevkoplyas, S. S., Brugnara, C. and Whitesides, G. M., “Density-based separation in multiphase systems provides a simple method to identify sickle cell disease”, Proceedings of the National Academy of Sciences, Vol. 111, No. 5, (2014), 14864-14869. DOI: https://doi.org/10.1073/pnas.1414739111
20.   Burr, P. A., Wenman, M. R., Gault, B., Moody, M. P., Ivermark, M., Rushton, M. J. D., Preuss, M., Edwards, L. and Grimes, R. W., “From solid solution to cluster formation of Fe and Cr in α-Zr”, Journal of Nuclear Materials, Vol. 467, No. 1, (2015), 320-331. DOI: https://doi.org/10.1016/j.jnucmat.2015.10.001
21.   Cullity, B. D. and Stock, S. R., Elements of X-ray Diffraction, New York: Pearson, 2001.
22.   Nowroozi, M. A., and Shokrollahi, H., “Magnetic and structural properties of amorphous/nanocrystalline Fe42Ni28Zr8Ta2B10C10 soft magnetic alloy produced by mechanical alloying”, Advanced Powder Technology, Vol. 24, No. 6, (2013), 1100-1108. DOI: https://doi.org/10.1016/j.apt.2013.03.016
23.   Suryanarayana, C., “Mechanical alloying and milling”, Progress Materials Science, Vol. 46, No. 1-2, (2001), 1-184. DOI: https://doi.org/10.1016/S0079-6425(99)00010-9
24.   Dieter, G.E., mechanical metallurgy, New York: McGraw-Hill Book Co., 1986.
28.   Lou, T., Fan, G., Ding, B., and Hu, Z., “The synthesis of NbSi2 by mechanical alloying”. Journal of Materials Research, Vol. 12, No. 5, (1997), 1172-1175. DOI: https://doi.org/10.1557/JMR.1997.0162
25.   Costa, M.B., Mateus, R., Guedes, M. and Ferro, A. C., “Mechanical alloying in the Li-Sn system”, Materials Letters: X, Vol. 6, No. 1, (2020), 100045. DOI: https://doi.org/10.1016/j.mlblux.2020.100045
26.   Annan, K. A., Daswa, P., Motumbo, K. and Siyasiya, C. W., “Influence of milling parameters on the structural and phase formation in Ti-20%Al alloy through mechanical milling”, Materials Today, (2020). DOI: https://doi.org/10.1016/j.matpr.2020.04.524
27.   Zhao, C., Lu, H., Wang, H., Tang, F., Nie, H., Hou, C., Liu, X., Song, X. and Nie, Z., “Solid-solution hardening of WC by rhenium”, Journal of the European Ceramic Society, Vol. 40, No. 2, (2020), 333-340. DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.09.050