A Multilayer Motion Direction Based Model for Tracking Vehicles at Intersections

M. Delavarian*, O. Marouzib, H. Hassanpoura

*Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran
bFaculty of Electrical & Robotic Engineering, Shahrood University of Technology, Shahrood, Iran

ABSTRACT

Visual vehicle tracking is an important topic in intelligent transportation systems. Intersections are challenging locations for visual systems to track vehicles which are simultaneously moving in different directions. In addition, normal traffic flow may change at intersections due to accidents. Congestion, occlusion and undetermined motion flows are the nominated challenging issues of vehicle tracking at intersections. In this paper, a method for tracking multiple vehicles is proposed considering the vehicle motion directions to overcome undetermined motion flows. For this purpose, a multilayer model is presented, which assigns each motion flows to distinct layers. Moreover, we introduce different neighborhoods for various layers considering the regular motion flows in a layer. Hence, vehicles entering from the same side of intersection with the same motion direction are assigned to the same layer. Then the tracking is performed on different layers separately. In special cases such as vehicles crossing each other, misdetections or occlusion, the proposed tracking method can predict the vehicles tracks by using the stored tracking history and considering neighborhoods in that layer. Experimental results show consistency between proposed tracking method results and ground truth, also outperformance of other tracking methods in tracking vehicles crossing the intersection.

1. INTRODUCTION

Vehicle monitoring process consists of two stages: vehicle tracking and vehicle behavior analysis. Active and passive sensors can be used for vehicle sensing at intersection [3]. Cameras are used as one of the passive sensors, and are often used in intersections due to their lower cost and wider field of view. The studying on vehicle tracking is an ongoing research as the systems are not yet reliable and robust for tracking vehicles under highly non-similar circumstances.

Researches have recently paying special attention to vision-based detection and tracking systems [4–8]. Lots of researches have been conducted on vehicle tracking and traffic monitoring in general [9–11]. Tracking at intersection has gained more attention over the past decade. Lately, special reviews are focused on intersection monitoring [1, 2]. In the research done by Datondji et al. [1], they reviewed vision based systems about intersection monitoring including sensing technologies, datasets, vehicles detection, tracking and
monitoring methods and their challenges. In another study reported in literature [2], they focused on behavior and safety analysis of vehicles, drivers and pedestrians at intersections besides techniques for automating visual sensing.

Tracking at intersection is usually discussed in a Bayesian framework [12, 13]. Among the Bayesian tracking methods, Kalman filter is one of the most popular algorithms. The Kalman filter tries to estimate the probability of the next state using previous information and measurements. Song and Nevatia [13] proposed a Markov Chain Monte Carlo (MCMC) in order to segment multiple overlapped vehicles into separate ones with respective orientation. In another research, a two level tracker, low-level and high-level, was introduced for VTI [14]. The first part tracks binary blobs. The high-level tracker models the target and estimates the route via the frame information. They used Kalman filter for predicting movements. Their proposed method could not track motionless vehicles and in crowded scenes.

Nateghinia et al. [15] introduced a video-based system for vehicle detection and tracking via dynamic texture modeling for background estimation. They used a point tracking method with weighted recursive least square. Liu et al. [16] proposed a three-dimensional particle filter tracking method. By collaborative tracking via visual information complementation, the robustness of tracking is improved.

For vehicle sensing at intersections, most systems require one or more cameras installed at certain positions which could cover most of the intersection area [17]. In some researches one camera above the ground or fisheye camera is used [18–20]. Wang et al. [19] proposed a real time system for tracking and counting multiple vehicles. They used fisheye camera based on simple feature points. In another research, drone floating camera is used [20]. In their proposed method, in the first phase they used background subtraction. Then, Kalman filter is applied to extract the potential a priori unknown road users. Afterwards, each user is tracked by key points inside the detected region. In the Ko-PER project, a dataset for intersection monitoring has been released [27]. This dataset contains laser-scanners and video cameras information. Also, they developed a system for tracking all road users by using all measurements of this dataset including laser-scanners and video frames information. They presented a general-purpose multi-sensor tracking algorithm. Therefore, a multiple-model method is needed in their approach. So, an extension of PHD (Probability Hypothesis Density) filter is proposed [28].

The method proposed by Yang and Bilodeau [29] tracks road users at intersection. Their method combines background subtraction and KFC (Kernelized Correlation Filter) tracker for data association and when an occlusion happens. In another research, a deep learning detection approach is used for object classification and labeling, then labels were employed in tracking users at intersection [30]. After that, they expanded the method to use background subtraction and detection labels by color and class to predict tracks in MOT [31]. Chan et al. [32] proposed city tracker that is a tracking framework in urban traffic scenes that applies a predetermined deep learning based detector and predicts tracks based on DeepSORT.

In this paper, a vehicle tracking method is proposed to overcome undetermined motion flows and the occlusion caused in VTI systems. Our focus is on tracking multiple vehicles at intersection from a camera view. The camera may be installed somewhere around the intersection and has almost a full view. A multilayer model is proposed to distinguish motion flows in distinct layers. The movements are based on the layers acceptable motion flows and the side through which vehicles enter the intersection. Different neighborhoods are introduced for each and distinct layers. Neighborhoods are constructed based on regular and acceptable motion
flows associated with the entering side of an intersection. Acceptable motion flows for an intersection are depicted in Figure 1. After constructing the multilayer and neighborhoods for an intersection, in tracking phase, vehicles entering to each side of intersection are assigned to its associated layer. Tracking is performed in each layer separately based on vehicles movements and the neighborhoods. In case of occlusions or misdetections during tracking, the proposed method considers history of tracks and routes the vehicles based on neighborhoods of layers. The proposed tracking method is based on initial model introduced in literature [33].

The rest of the paper is organized as follows: In section 2 the proposed tracking method is described. Experimental results are presented in section 3. In section 4 experimental scenarios are discussed. Section 5 concludes the paper.

2. THE PROPOSED METHOD

VTI is a challenging task due to the involvement of various parameters, including the simultaneous movement of multiple vehicles and pedestrians. Once vehicles cross the intersection, different directions are possible to be taken. Figure 1 depicts different motion flows at an intersection from each entry-exit side. It can be seen that motion flows may collide with each other, consequently accidents may happen.

One standard approach in multi-object tracking algorithms is tracking-by-detection [34]. Detecting is performed separately. Therefore, detection performance does not affect tracking performance. The proposed method initially detects vehicles only, (excluding pedestrians or bicycles), using an existing detection method. It is assumed that vehicles crossing intersection only follow predefined directions (see Figure 1).

2.1. Multilayer Model Construction

A multilayer model is employed for tracking, in which different motion flows are distributed in distinct layers. The proposed model assigns one layer for each entry-exit side, so based on the number of entry-exit sides, we have layers, $1 \leq l \leq L$, L is the total number of layers. In this study, we assume that each intersection has four entry-exit sides, so $L=4$. However, there is no limitation in the total number of layers (entry-exit sides).

The area of tracking, i.e. the field of view (FOV) is indicated manually. The sides of FOV, that are associated with each entry side and layer, are labeled clockwise, say from 1 to 4 starting from top side as it can be seen in Figure 2. After that a grid is constructed over the ground of intersection as it is shown in Figure 2. The size of grid cells is determined by the distance between grid lines. This distance is a user determined, variable in pixels, which shall be called the step parameter. The y-intercept of the grid lines that is called y Intercept Change should be modified as shown in Equation (1), where a is the line slope.

$$y\text{ Intercept Change} = \frac{\text{step}}{\sqrt{1/(1+a^2)}}$$

Afterwards all crossing points of grid lines are stored in matrix p. Then, a grid cell matrix C is created where each $C(i,j)$ is associated with four points of the matrix p like $[p(i,j), p(i,j+1), p(i+1,j+1), p(i+1,j)]$. So, each cell of grid matrix C represents a part of the intersection. The sample grids for the values 20 and 40 of step parameter for Ko-PER dataset intersection [27] are shown in Figure 3. As can be seen with a smaller step parameter, the grid matrix has more cells with a smaller size. The size and number of cells, as results of the value of step parameter, have direct effect in tracking results and run time that will be discussed in section 3.

Vehicles in each layer can only move in permissible directions. Also, layers are independent of each other, which means vehicles cannot move between layers. We introduced neighborhoods to model allowed acceptable motion directions for each layer separately. Hence, the difference between the layers is equivalent to the cell’s neighborhoods in each layer. If a vehicle is at cell $C(i,j)$ of layer k at time t, it can be at cell $C(i,j)$ or cell $C(i,j')$
where \((i',j')\) is neighbors of cell \((i,j)\) at time \((t+1)\) and layer \(k\). Neighbors are based on the layer's motion directions. For example, neighbors of \((i,j)\) in layer 1 can be \((i, j-1)\) (for turning left), \((i,j+1)\) (for turning right), \((i+1,j)\) (for going straight) and finally \((i+1,j-1)\) and \((i+1,j+1)\) (for turning left and right, respectively). So, two of the neighbors are adjacent and the other three are in front of those two and itself (the front direction is determined relative to the movement direction of the layer). The set of these five neighborhood cells are called Near neighborhood. This neighborhood is more useful when the step parameter is big or the recording frame rate is high.

When the frame rate is low or the value of step parameter is small, a vehicle can move more than one neighboring cell. Another case is that due to variations of camera view angle for different grid cells, there is some confusion in positioning far and near cells to the camera. Therefore, in addition to the Near neighborhood, a bigger neighborhood is needed. Hence, Far neighborhood is introduced. In the Far neighborhood, each cell of the Near neighborhood has another neighboring cell in the motion directions of that layer. For instance, in layer 4 (left side) cell \(C(i,j)\) has \((i,j+1)\) as its neighbors in Near neighborhood. Cell \(C(i,j+2)\) is added for Far neighborhood and this goes on for other neighbors. The Near and Far neighborhoods of layer 2 are defined in Table 1. The index \((i,j)\) is the cell where the vehicle is currently located. The cells in the gray background are Near neighbors and the cells with white background are Far neighbors. Each layer has different Near and Far neighborhood cells based on its motion direction flows.

The neighborhoods of other layers are computed the same way as it shows for layer 2 in Table 1 and layer 1 in previous paragraph.

2.2. The Tracking Algorithm

Multilayer model including layers and neighborhoods is constructed for an intersection before tracking is performed. During tracking, when a vehicle enters the intersection, a new tag number, \((tag>0)\), is assigned to it. Also, the vehicle is assigned to the associated layer. Afterwards, tracking is performed for each layer separately. During the tracking phase, track records are stored. Track records for vehicles consist of main information and are saved in the format of Equation (2):

\[
TrackRecord=[time, layer, tag, i, j, middlePoint]
\]

(2)

where \(time\) is the frame number or tracking time, \(layer\) and \(tag\) are the layer number and vehicle identification number, respectively; \(i\) and \(j\) are cell index of the grid matrix \(C\) which is the vehicle position on FOV and \(middlePoint\) for middle point of their bounding boxes.

For the next frames, the detected vehicles may remain motionless or move to one of their neighboring cells. Each grid cell can only contain one vehicle at a time. For the following frames, we looked for previously recognized vehicles’ trajectories in neighborhoods of detected vehicles cells. This repeats for every detected vehicle on next frames. When a vehicle enters the intersection, after incrementing the previous tag number, it is assigned to the vehicle. However, if it had been entered previously, it already has a trajectory, layer and tag number. So, it gets the tag and layer number from the trajectory that this vehicle belongs to based on the above procedure.

We introduced two neighborhoods including Near and Far. Therefore, for checking neighborhoods, three cases can be considered. In the first case, only the Near neighborhood is checked. This neighborhood can be used when the step parameter is big or scenes are crowded. In the second one, the Far neighborhood is checked which is used when step parameter is small. In the third case, both neighborhoods are considered. At first, the temporary destination is checked based on Near neighborhood and if there is no track in Near neighborhood's previous frame then the Far neighborhood is checked.

![Image 3. Grid cells of FOV in Ko-PER dataset for step parameter equals to (a) 20, (b) 40](image-url)

TABLE 1. Near and Far neighborhoods for right side layer (Layer 2)

\(i-2, j-2\)	\(i-2, j-1\)	\(i-2, j\)
\(i-1, j-2\)	\(i-1, j-1\)	\(i-1, j\)
\(i, j-2\)	\(i, j-1\)	\(i, j\)
\(i+1, j-2\)	\(i+1, j-1\)	\(i+1, j\)
\(i+2, j-2\)	\(i+2, j-1\)	\(i+2, j\)
The previous steps are performed for vehicles contained in each frame. Each track ends when the vehicle crosses other side lines or the detections are out of FOV.

One of the advantages of the proposed tracking algorithm is that no collision occurs. Because during the tracking phase vehicles that come from different sides are assigned to different layers. The other advantage is that if an occlusion or misdetection occurs according to the history of tracks and checking the neighborhoods based on Far neighborhood of Near neighborhood cells, the tracking algorithm can predict tracks. Finally, at the end or any time in the middle of tracking, all tracks can be computed by using the tag number and saved history of the tracks. The final proposed tracking method based on the multilayer model, Near and Far neighborhoods is summarized in Algorithm 1. The preprocessing is done once for each intersection and tracking is performed for each frame and detection.

For a better demonstration of the proposed tracking method, two sample consecutive frames during tracking are shown in Figure 4. At time t and $t+1$, middle point of detected and tracked vehicles are shown. Different colors show vehicles in different layers. Near neighborhood cells of some vehicles are drawn with red dots. The correspondent arrows with the same layer color show the correspondent tracked vehicle in frame $t+1$. As the figure illustrates, the vehicles appear in their neighborhoods based on the layers' motion flows.

3. EXPERIMENTAL RESULTS

The proposed tracking method contains a number of parameters including values of step and different neighborhoods. By the step value, resolution of tracking is controlled. Before the tracking phase, the multilayer model is constructed as a preprocessing phase and is computed just once for each intersection.

ALGORITHM 1. Proposed tracking method based on multilayer model

Preprocessing:
- Multilayer model construction
- Indicating FOV
- Labeling entry-exit sides clockwise starting from top side
- Determining step parameter value
- Constructing grid cells over the ground of intersection
- Assigning a layer to each entry-exit side
- Determining Near and Far neighborhoods for all layers and cells

Tracking:

```
for each frame t do
    Extract detections from a detector for frame t
    for each detection det in t do
        if det entering the intersection then
            layer number
            tag number
            middlePoint < the centroid of det
            [i,j] < the cell that middlePoint is located at
            Create TrackRecord = [t, layer, tag, i, j, middlePoint]
        else
            middlePoint < the centroid of det
            [i,j] < the cell that middlePoint is located at
            if (check Near neighborhood based on layer and tag number) then
                Add TrackRecord = [t, layer, tag, i, j, middlePoint]
            else
                if (check Far neighborhood based on layer and tag number) then
                    Add TrackRecord = [t, layer, tag, i, j, middlePoint]
                else
                    //collision and misdetection handling
                    if (history checking and predicting this detection belongs to which track) then
                        Add TrackRecord = [t, layer, tag, i, j, middlePoint]
                    end if
                end if
        end if
    end for
Tracks < Compute tracks based on track records, tags, and multilayer model
```
3. 1. The Datasets
The Ko-PER dataset is used in our experiments [27] as the main dataset. In Germany, the intersection is an actual four way crossing and cameras are monochrome. The first camera has a complete FOV such that the whole intersection information can be acquired. In our experiments, sequence 1 is used that it is divided into four parts named 1a, 1b, 1c and 1d that have the same duration and are considered separately. The detection results that have been released with the Ko-PER dataset is used and extracted from the dataset viewer. In research done by Meissner et al. [28], information from all views and laser-scaners are used, so the detection results are accurate enough. The sequences are considered crowded since there are several vehicles that are crossing the street at the same time. The sample frame and view of the Ko-PER dataset is shown in Figure 3.

Another dataset that is used for comparison is Urban Tracker dataset [26, 35]. It includes vehicles and pedestrians for tracking. Here from the dataset, three sequences are selected as Sherbrooke, Rouen, St-Marc. The sample frames of Urban Tracker dataset are presented in Figure 5. As can be seen the cameras placement and views are different in each sequence. However, they are less crowded in comparison with Ko-PER dataset.

3. 2. Evaluation Metrics
For evaluating multi-object trackers CLEAR MOT metrics are known as a standard metric [36]. In CLEAR MOT metrics, the accuracy of trackers is defined by Multi-Object Tracking Accuracy (MOTA) that is defined as Equation (3):

\[
MOTA = 1 - \frac{\sum(m_i + f_p + m_m)}{\sum g_t}
\]

where \(g_t\) is the number of ground truth detections, \(f_p\) is the number of false positives, \(m_i\) is the number of misdetections, and \(m_m\) is the number of identity switches. The MOTA is computed by comparing tracking results with Ground Truth (GT).

There exists quality metrics that were presented in [37] to compare trackers all by comparison with GT and are defined as follows:

- Mostly Tracked (MT) - the percentage of tracks that are successfully tracked for more than 80%.
- Mostly Lost (ML) - the percentage of tracks that are tracked for less than 20%.
- Partially Tracked (PT) - the percentage of tracks that are tracked between 20 and 80% (1-MT-ML).
- Identity Switch (IDS) - the number of times two tracks switch their IDs.

For these metrics, higher MT and lower ML, PT, IDS is preferred.

3. 3. Evaluation of the Proposed Tracking Method
For validation of the proposed tracker and parameters’ effect, Ko-PER dataset is selected since it is the longest and crowded one. During our experiments to assess the proposed tracking algorithm, we noted that for the Ko-PER dataset, due to camera placement, vehicles that enter from the right side and make a sharp turn to the bottom side can easily be lost. To solve this, we modified neighborhoods of the right-side layer (layer 2). We added some neighbors to the right side of both Near and Far neighborhoods.

To assess the neighborhood effect, experiments are done on three cases considering neighborhoods: Near, Far or both neighborhoods. Besides to neighborhoods, another important parameter is the value of step. To evaluate its effect, the tracking procedure is performed.
for step values from 10 to 40 in steps of 5 to demonstrate its effect. In Figure 3, FOV cells of Ko-PER dataset for step values 20 and 40 are depicted. Here, the effect of step value in the number and size of grid cells can be seen visually. As mentioned for predicting the tracks when collision, occlusion or misdetections occur, the history of tracks is checked. The parameter for checking the history is α which means checking $(t-\alpha)$ tracks history. For all experiments, α is equal to 2.

Three cases of neighborhoods and different step values are considered to investigate the effect of them in tracking results. Each case is reviewed separately.

Case 1. Tracking based on Near neighborhood: The results based on MT, ML, PT and IDS for all four sequences of Ko-PER dataset are revealed in Figure 6 for comparison. As the figure shows in all four sequences for small values of step, the value of ML and PT is bigger. The reason is that when only checking Near neighborhood with a small value of step that results in small cells, a vehicle could cross more than just one cell of its neighborhood. So, it does not exist in the cell that is predicted based on Near neighborhood. However, as step value increases, this does not happen. As a result, using Near neighborhood for bigger values of step can lead to better results.

Case 2. Tracking based on Far neighborhood: The tracking results are shown in Figure 7. More identity switches happen when step value is bigger in comparison with when using just Near neighborhood (see the difference between Figures 6 and 7, IDS column especially for bigger value of step). A lot of identity switches mean tracks appear in each other’s neighborhood and this is the result of checking bigger neighborhood when it is not necessary. Also, we have fewer ML and PL tracks when step is small in comparison with using just near neighborhood. Therefore, this neighborhood works better with smaller values of step.

Case 3. Tracking using both neighborhoods: The tracking is performed based on both neighborhoods respectively. First, Near neighborhood is checked and if a trajectory cannot be found, then the Far neighborhood is checked. The results are presented in Figure 8. This case has the benefit of the two previous cases. When the step value is small, ML and PT are less. Also, when step has bigger values identity switches occur less. However, still ML and PT tracks and IDS exist especially when step value is very small or very big. The reason is for parts of the intersection that are far from the camera, from camera viewpoint the movement seems bigger as the size of the

![Figure 6. Tracking results based on Near neighborhood and different values of step (a) sequence 1a, (b) sequence 1b, (c) sequence 1c, (d) sequence 1d](image)

![Figure 7. Tracking results based on Far neighborhood and different values of step (a) sequence 1a, (b) sequence 1b, (c) sequence 1c, (d) sequence 1d](image)

![Figure 8. Tracking results based on both neighborhoods and different values of step (a) sequence 1a, (b) sequence 1b, (c) sequence 1c, (d) sequence 1d](image)
cells are the same. For identity switches that happen in bigger values of step the same reason applies.

After studying the results of the three cases, the best strategy is case 3 using both Near and Far neighborhoods, respectively. As discussed before, step is an important parameter, smaller values of step result in more cells with smaller size. The importance can be demonstrated by the results obtained so far. Smaller or bigger values of step are not suitable choices and affect the results negatively (more ML and PT or more IDS respectively). The best step value for the Ko-PER dataset intersection is 20 or 25. It provides the highest number of MT tracks and fewer ML, PT or IDS in comparison with other values.

After determining the best neighborhood strategy and value of step parameter, all evaluation metric for all four sequences of Ko-PER dataset are presented in Table 2. In all sequences above 96% of trajectories are tracked completely and the accuracy is above 0.9; however, still identity switches happen.

To evaluate the tracker runtime, we run the tracking algorithm for all four sequences for step values from 10 to 40. Out of the three possible cases for checking the neighborhood, the third case is selected as previous results show its better performance. Each runtime is the average of running the algorithm for 10 times. Also, we divided the whole sequence to batches of 60 frames. The last frame of each batch and first frame of the next batch overlap so that the tracks from the previous batch can continue correctly. Using batches has the advantage that small tracks can be acquired quickly, since vehicles cross the intersection in frames that are a lot fewer than the whole sequence. Our proposed multilayer tracker was implemented in MATLAB on a system with 2.2GHz Intel Corei7 and 16GB of RAM. Since the camera records 25 Frames Per Second (25FPS) [27], and we considered 60 frames in each batch, the algorithm running time up to 2.4 seconds per batch is considered real time.

Runtimes for all sequences are presented in Figure 9. As the figure illustrates for step value equals to 10, as a result of too many small cells, the running time has a high value. However, for step parameter equals to 40, the number of cells is less so the algorithm running time decreases too. For step value equals to 20 and more, the tracks can be acquired in real time in this dataset.

Based on the results of neighborhoods and execution time, setting the step parameter equal to 20 is the best choice for this intersection. Also, the results show that our proposed tracking algorithm can be applied in real time applications.

Sample tracking results are shown in Figure 10. Tracks in different color belong to different layers, red for layer 1 (top side layer), green for layer 2 (right side layer), black for layer 3 (bottom side layer), yellow for layer 4 (left side layer). The blue color shows that vehicles are out of FOV. The first row in Figure 10 shows tracks while tracking is performed, and the second row shows final tracks after tracking is done. The tracks are from Ko-PER dataset for step value equals to 20 and using both neighborhoods.

3.4 Comparison with Other Methods In this part, to validate our proposed tracker, it is compared with other trackers. The results are reported on Urban Tracker dataset for Sherbrooke, Rouen, St-Marc videos in Table 3. The cars part of the Urban Tracker dataset is selected as here tracking vehicles at intersection is considered. One of the trackers is Traffic Intelligence that is a feature-
based tracking algorithm [38]. The other, which is Urban Tracker, is introduced with the dataset and tracks all road users, detection are done by performing background subtraction and tracking is performed by Kalman filter [26, 35]. Mendes et al. [39] combined background subtraction with blob detection and optical flow. MKCF (Multiple Kernelized Correlation Filter) tracker is introduced in literature [29], that applies background subtraction and multiple KCF trackers. As can be seen, our proposed multilayer tracker outperforms the accuracy of the other trackers in all three videos of the dataset.

The MT, ML, and PT of Urban Tracker dataset for proposed tracker and two other trackers are reported in Table 4 for better comparison.

4. DISCUSSION

Vehicles are detected before tracking, and detections are not always accurate. For demonstrating the effect of misdetections (vehicles are not detected) and false positives (other objects being identified as vehicles) that are caused by reasons such as occlusion, shadow and collision, some experiments are performed and the results are investigated here. To study how these affect the tracking results and how the proposed tracking method deals with them, tracking sequences are recreated from the original ones. The reported results are the average of 10 runs with different missed and false detections on each run. The other tracking parameters are as follows: third case (using both neighborhoods respectively), step value equals to 20 and checking the history of two previous frames. Checking more frames for history leads to better results but because real-time execution is pursued, it is not used.

Different scenarios are created. The first one is applying misdetections. So, detections are deleted randomly. We considered 2, 5 and 10% of misdetections. As a result, sequences detections are recreated based on these values randomly. The results are presented in Table 5. As it shows for 2% misdetections, tracking results do not show much difference from the original one (see Table 2). But, as the number of misdetections increases so does the number of ML and PT tracks, and MOTA decreases. However, even in 10% misdetections most of the tracks are found and the accuracy is around 0.8.

The other scenario is applying false detections. False detections are created randomly with two strategies called addition and replacement. In the addition strategy, detections that are not vehicles are added randomly. In the replacement strategy, a number of detections are deleted from their original frames and are added randomly to other frames detections, so misdetections are created simultaneously. The results are presented in Table 6 for 2, 5 and 10% of false detections with addition strategy and in Table 7 for replacement strategy.

The results of the addition strategy demonstrate that it does not affect the evaluation metrics. Even with 10% false detections with addition strategy, the results are unaffected. Therefore, the proposed tracker is robust to this strategy. However, because false positives are added, MOTA decreases. Table 7 shows the results of false detections created with the replacement strategy, since misdetections are added at the same time, there are more ML tracks, and the results are similar to just adding misdetections. But here, since there are miss and false detections at the same time, MOTA decreases more.

The proposed tracking method based on multilayer model thoroughly tracks vehicles by considering their motion flows without any visual features, although in

Table 3. Trackers comparison for Urban Tracker dataset

<table>
<thead>
<tr>
<th></th>
<th>MOTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sherbrooke (Cars)</td>
<td>0.962</td>
</tr>
<tr>
<td>Rouen (Cars)</td>
<td>0.980</td>
</tr>
<tr>
<td>St-Marc (Cars)</td>
<td>0.939</td>
</tr>
</tbody>
</table>

Table 4. Trackers MT, ML and PT comparison for Urban Tracker dataset

<table>
<thead>
<tr>
<th></th>
<th>MT (%)</th>
<th>ML (%)</th>
<th>PT (%)</th>
<th>MT (%)</th>
<th>ML (%)</th>
<th>PT (%)</th>
<th>MT (%)</th>
<th>ML (%)</th>
<th>PT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sherbrooke (Cars)</td>
<td>96.2</td>
<td>1.8</td>
<td>2.0</td>
<td>85.0</td>
<td>5.0</td>
<td>10.0</td>
<td>60.0</td>
<td>25.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Rouen (Cars)</td>
<td>98.0</td>
<td>0.0</td>
<td>2.0</td>
<td>75.0</td>
<td>0.0</td>
<td>25.0</td>
<td>37.5</td>
<td>37.5</td>
<td>25.0</td>
</tr>
<tr>
<td>St-Marc (Cars)</td>
<td>92.9</td>
<td>1.5</td>
<td>5.5</td>
<td>64.3</td>
<td>7.1</td>
<td>28.6</td>
<td>60.7</td>
<td>17.9</td>
<td>21.4</td>
</tr>
</tbody>
</table>
specific situations losing tracks and identity switch could happen. Since detections and tracks are distributed among different layers, as the results show, tracking time becomes real time.

TABLE 5. Tracking results for all sequences with misdetections of Ko-PER dataset

<table>
<thead>
<tr>
<th></th>
<th>MT</th>
<th>ML</th>
<th>PT</th>
<th>IDS</th>
<th>MOTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misdetection 2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence 1a</td>
<td>100</td>
<td>0.00</td>
<td>0.00</td>
<td>21.05</td>
<td>0.9177</td>
</tr>
<tr>
<td>Sequence 1b</td>
<td>100</td>
<td>0.00</td>
<td>0.00</td>
<td>17.24</td>
<td>0.9324</td>
</tr>
<tr>
<td>Sequence 1c</td>
<td>93.85</td>
<td>3.08</td>
<td>3.08</td>
<td>13.85</td>
<td>0.9107</td>
</tr>
<tr>
<td>Sequence 1d</td>
<td>98.61</td>
<td>0.00</td>
<td>1.39</td>
<td>11.11</td>
<td>0.9382</td>
</tr>
<tr>
<td>Misdetection 5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence 1a</td>
<td>89.47</td>
<td>1.75</td>
<td>8.77</td>
<td>17.54</td>
<td>0.9140</td>
</tr>
<tr>
<td>Sequence 1b</td>
<td>93.10</td>
<td>5.17</td>
<td>1.72</td>
<td>17.24</td>
<td>0.8702</td>
</tr>
<tr>
<td>Sequence 1c</td>
<td>95.38</td>
<td>4.62</td>
<td>0.00</td>
<td>18.46</td>
<td>0.8948</td>
</tr>
<tr>
<td>Sequence 1d</td>
<td>98.61</td>
<td>0.00</td>
<td>1.39</td>
<td>11.11</td>
<td>0.9364</td>
</tr>
<tr>
<td>Misdetection 10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence 1a</td>
<td>89.47</td>
<td>5.26</td>
<td>5.26</td>
<td>24.56</td>
<td>0.8512</td>
</tr>
<tr>
<td>Sequence 1b</td>
<td>84.48</td>
<td>12.07</td>
<td>3.45</td>
<td>17.24</td>
<td>0.8518</td>
</tr>
<tr>
<td>Sequence 1c</td>
<td>76.92</td>
<td>10.77</td>
<td>13.79</td>
<td>24.62</td>
<td>0.7729</td>
</tr>
<tr>
<td>Sequence 1d</td>
<td>86.11</td>
<td>8.33</td>
<td>5.56</td>
<td>11.11</td>
<td>0.8658</td>
</tr>
</tbody>
</table>

TABLE 6. Tracking results for all sequences of Ko-PER dataset with false detections with addition strategy

<table>
<thead>
<tr>
<th></th>
<th>MT</th>
<th>ML</th>
<th>PT</th>
<th>IDS</th>
<th>MOTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>False detection 2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence 1a</td>
<td>98.25</td>
<td>1.75</td>
<td>0.00</td>
<td>17.54</td>
<td>0.865</td>
</tr>
<tr>
<td>Sequence 1b</td>
<td>100</td>
<td>0.00</td>
<td>0.00</td>
<td>13.79</td>
<td>0.9317</td>
</tr>
<tr>
<td>Sequence 1c</td>
<td>98.46</td>
<td>0.00</td>
<td>1.54</td>
<td>18.46</td>
<td>0.8948</td>
</tr>
<tr>
<td>Sequence 1d</td>
<td>100</td>
<td>0.00</td>
<td>0.00</td>
<td>11.11</td>
<td>0.9355</td>
</tr>
<tr>
<td>False detection 5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence 1a</td>
<td>98.25</td>
<td>1.75</td>
<td>0.00</td>
<td>17.54</td>
<td>0.9348</td>
</tr>
<tr>
<td>Sequence 1b</td>
<td>100</td>
<td>0.00</td>
<td>0.00</td>
<td>13.79</td>
<td>0.9135</td>
</tr>
<tr>
<td>Sequence 1c</td>
<td>98.46</td>
<td>1.54</td>
<td>0.00</td>
<td>18.46</td>
<td>0.8737</td>
</tr>
<tr>
<td>Sequence 1d</td>
<td>100</td>
<td>0.00</td>
<td>0.00</td>
<td>11.11</td>
<td>0.9213</td>
</tr>
<tr>
<td>False detection 10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence 1a</td>
<td>98.25</td>
<td>1.75</td>
<td>0.00</td>
<td>17.54</td>
<td>0.8023</td>
</tr>
<tr>
<td>Sequence 1b</td>
<td>100</td>
<td>0.00</td>
<td>0.00</td>
<td>13.79</td>
<td>0.8846</td>
</tr>
<tr>
<td>Sequence 1c</td>
<td>98.46</td>
<td>1.54</td>
<td>0.00</td>
<td>18.46</td>
<td>0.8519</td>
</tr>
<tr>
<td>Sequence 1d</td>
<td>100</td>
<td>0.00</td>
<td>0.00</td>
<td>11.11</td>
<td>0.8902</td>
</tr>
</tbody>
</table>

TABLE 7. Tracking results for all sequences of Ko-PER dataset with false detections with replacement strategy

<table>
<thead>
<tr>
<th></th>
<th>MT</th>
<th>ML</th>
<th>PT</th>
<th>IDS</th>
<th>MOTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>False detection 2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence 1a</td>
<td>98.25</td>
<td>1.75</td>
<td>0.00</td>
<td>17.54</td>
<td>0.9252</td>
</tr>
<tr>
<td>Sequence 1b</td>
<td>98.28</td>
<td>0.00</td>
<td>1.72</td>
<td>13.79</td>
<td>0.9151</td>
</tr>
<tr>
<td>Sequence 1c</td>
<td>100</td>
<td>0.00</td>
<td>0.00</td>
<td>21.54</td>
<td>0.8800</td>
</tr>
<tr>
<td>Sequence 1d</td>
<td>98.61</td>
<td>0.00</td>
<td>1.39</td>
<td>11.11</td>
<td>0.9308</td>
</tr>
<tr>
<td>False detection 5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence 1a</td>
<td>94.74</td>
<td>0.00</td>
<td>5.26</td>
<td>21.05</td>
<td>0.8843</td>
</tr>
<tr>
<td>Sequence 1b</td>
<td>89.66</td>
<td>6.90</td>
<td>3.45</td>
<td>24.14</td>
<td>0.8567</td>
</tr>
<tr>
<td>Sequence 1c</td>
<td>92.31</td>
<td>3.08</td>
<td>4.62</td>
<td>24.62</td>
<td>0.8365</td>
</tr>
<tr>
<td>Sequence 1d</td>
<td>97.22</td>
<td>0.00</td>
<td>2.78</td>
<td>5.56</td>
<td>0.9097</td>
</tr>
<tr>
<td>False detection 10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence 1a</td>
<td>87.72</td>
<td>3.51</td>
<td>8.77</td>
<td>24.56</td>
<td>0.8144</td>
</tr>
<tr>
<td>Sequence 1b</td>
<td>86.21</td>
<td>5.17</td>
<td>8.62</td>
<td>17.24</td>
<td>0.7807</td>
</tr>
<tr>
<td>Sequence 1c</td>
<td>86.15</td>
<td>4.62</td>
<td>9.23</td>
<td>21.54</td>
<td>0.7774</td>
</tr>
<tr>
<td>Sequence 1d</td>
<td>86.11</td>
<td>8.33</td>
<td>5.56</td>
<td>15.28</td>
<td>0.8118</td>
</tr>
</tbody>
</table>

5. CONCLUSION

In this paper, we proposed a new method for tracking vehicles at intersection. It uses a multilayer model for tracking, a distinct layer for each entering side of the intersection. The layers are constructed considering the permissible motion flows and neighborhoods for the associated entering side. Then in tracking procedure each entering vehicle is detected and assigned to its associated layer and the movements are tracked. Indeed, tracks can be predicted as each vehicle has permissible directions to follow depending to its entering side. To evaluate performance of the proposed method, we tested the method with various scenarios, each of which imposed up to 10% false and misdetections on the Ko-PER dataset. The results showed that the proposed method can thoroughly track vehicles at intersection in many scenarios. Also, it outperforms other trackers. Therefore, we can claim that the proposed multilayer tracking method is computationally effective and can be used in real time tracking applications.

6. REFERENCES

17. Shi, Y., and Real, F. D. “Smart cameras: Fundamentals and classification.” In Smart Cameras (pp. 19–34). Springer. https://doi.org/10.1007/978-3-319-24141-4_2

Persian Abstract

چکیده

راهگیری تصویری یک موضوع مهم در سیستم‌های حمل و نقل هوشمند است. تجربه‌ها ماکان چالش‌برانگیزی برای رهگیری در سیستم‌های تصویری هستند، زیرا وسایل نقلیه در جهت‌های مختلف ممکن است با هم مواجه شوند. از این‌رو، به‌خوبی راهکارهایی برای سیستم‌های محلولی و حلولی، در تجربه‌های مصرف‌کننده و راهکارهای تجربی و توانایی در تقابل با دیدار گرفتن جریان‌های حمل و نقل مورد مطالعه قرار گرفته است. راهگیری در جهت‌های مختلف با توجه به جریان‌های وسایل نقلیه، وسایل نقلیه و تجربیات در تقابل است. در این مقاله، یک روش برای رهگیری وسایل نقلیه در تقابل با دیدار گرفتن جریان‌های حمل و نقل معرفی می‌شود.

در این روش، یک مدل چند لایه برای راهکارهای مکانیکی در راهکارهای محلولی و حلولی مطرح می‌شود. در این روش، این مدل برای اینکه راهکارهای محلولی و حلولی در تقابل با دیدار گرفتن جریان‌های حمل و نقل مورد مطالعه قرار گرفته است.

پیشنهاد می‌شود که روش‌های محلولی و حلولی در تقابل با دیدار گرفتن جریان‌های حمل و نقل مورد مطالعه قرار گرفته و در نتیجه، به‌خوبی راهکارهای محلولی و حلولی به‌طور مناسب در تقابل با دیدار گرفتن جریان‌های حمل و نقل مورد مطالعه قرار گرفته است.