Mechanical Properties Analysis of Bilayer Euler-Bernoulli Beams Based on Elasticity Theory

Document Type: Original Article

Authors

1 Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province – 928, No.2 Avenue, Xiasha, China

2 Minmetals Yingkou Medium Plate CO., LTD, Yingkou, Liaoning Province, China

Abstract

This paper analyzes the effects of structures and loads on the static bending and free vibration problems of bilayer beams. Based on static mechanical equilibrium and energy equilibrium, the static and dynamic governing equations of bilayer beam are established. It is found that the value of the thickness ratio has a significant effect on the static and dynamic responses of the beam, and the structure factors have their own critical value. When the value of the relative thickness is lower than its critical value or the length thickness ratio is greater than its critical value, the static and dynamic responses of the beam increase obviously. The results reveal that a critical value exists in bilayer beam, the value has noticeable influence on the mechanical properties of bilayer beams. Therefore, investigators should predict the critical structures accurately, when they design the bilayer beam.

Keywords


  1. Wang, L., Ding, J. J., Jiang, Z. D., Jiang, Z. D., Luo, G. X. Zhao, L., Lu, D. J., Yang, X. and Maeda, R., “A packaged piezoelectric vibration energy harvester with high power and broadband characteristics”, Sensors and Actuators A: Physical,  Vol. 295, (2019), 629-636. DOI: 10.1016/j.sna.2019.06.034
  2. Ferraria,M., Alghisi, D., Baù, M. and Ferrari,V., “Nonlinear Multi-Frequency Converter Array for Vibration Energy Harvesting in Autonomous Sensors”, in 26th European Conference on Solid-State Transducers (Eurosensors) in Wroclaw Univ Technol, Fac Microsystem Elect & Photon, Krakow, POLAND 2012, Procedia Engineering, Vol. 47, (2012). DOI: 10.1016/j.proeng.2012.09.171
  3. Khorramshahi, M. R. and Mokhtari, A., “Automatic Construction by Contour Crafting Technology”, Emerging Science Journal, Vol. 1, No. 4, (2017), 1-28. DOI: 10.28991/esj-2017-01113
  4. Haghpanah, F. and Foroughi H., “Size and Shape Optimization of Space Trusses Considering Geometrical Imperfection-Sensitivity in Buckling Constraints”, Civil Engineering Journal, Vol. 3, No. 12, (2018), 1314-1326. DOI: 10.28991/cej-030960
  5. Laminou, L. M., Liu, Z. J., and Chen, X. H., “Extreme Events design and Mitigation Methods: A Review”, Civil Engineering Journal, Vol. 5, No. 6, (2019), 1424-1439. DOI: 10.28991/cej-2019-03091342
  6. Scarpa, F., Adhikari, S. and Phani, A. S., “Effective elastic mechanical properties of single layer graphene sheets”, Nanotechnology, Vol. 20, No. 6, (2009), 1-11. DOI: 10.1088/0957-4484/20/6/065709
  7. Damanpack, A. R., Bodaghi, M., Aghdam, M. M. and Shakeni, M., “On the vibration control capability of shape memory alloy composite beams”, Composite Structures, Vol. 110, (2014), 325-334. DOI: 10.1016/j.compstruct.2013.12.002
  8. Kok, S. L., White, N. M. and Harris, N. R., “Fabrication and characterization of free-standing thick-film piezoelectric cantilevers for energy harvesting”, Measurement Science and Technology,  Vol. 20, No. 12, (2009), 1-13. DOI: 10.1088/0957-0233/20/12/124010
  9. Chun, D. M., Sato, M. and Kanno, I., “Precise measurement of the transverse piezoelectric coefficient for thin films on anisotropic substrate”, Journal of Applied Physics,  Vol. 113, No. 4, (2013), 044111.1-044111.19. DOI: 10.1063/1.4789347
  10. Alameh, A. H., Gratuze, M. and Nabki, F., “Impact of Geometry on the Performance of Cantilever-Based Piezoelectric Vibration Energy Harvesters”, IEEE Sensors Journal, Vol. 22, No. 15, (2019), 10316-10326. DOI: 10.1109/JSEN.2019.2932341
  11. Wang, L., Zhao, L. B., Jiang, Z. D., Luo, G. X., Yang, P., Han, X. G., Li, X. and Maeda, R., “High accuracy Comsol simulation method of bimorph cantilever for piezoelectric vibration energy harvesting”, AIP Advances, Vol. 9, No. 9, (2019), 095067.1-095067.7. DOI: 10.1063/1.5119328
  12. Al-Qasem, I., Hasan, A. R., Abdulwahid, M. Y. and Galobardes, I., “Comparison between Analytical Equation and Numerical Methods for Determining Shear Stress in a Cantilever Beam”, Civil Engineering Journal, Vol. 4, No. 2, (2018), 258-265. DOI: 10.28991/cej-030989
  13. Lotfavar, A. and Mosalaeifard, A. H., ”Three-dimensional Vibration Suppression of an Euler-Bernoulli Beam via Boundary Control Method”, International Journal of Engineering-Transactions B: Applications, Vol. 28, No. 5, (2015), 755-763. DOI: 10.5829/idosi.ije.2015.28.05b.14
  14. Alashti, R. A, and Abolghasemi, A. H., “A Size-dependent Bernoulli-Euler Beam Formulation based on a New Model of Couple Stress Theory”, International Journal of Engineering-Transactions C: Aspects, Vol. 27, No. 6, (2014), 951-960. DOI: 10.5829/idosi.ije.2014.27.06c.14
  15. Torabi, K., Ghassabib, M., Heidari-Rarania, M., and Sharific, D., ”Variational Iteration Method for Free Vibration Analysis of a Timoshenko Beam under Various Boundary Conditions” , International Journal of Engineering- Transactions A: Basics, Vol. 30, No. 10, (2017), 1565-1572. DOI: 10.5829/ije.2017.30.10a.18
  16. JafarSadeghi-Pournaki, I., Zamanzadeh, M. R., Madinei, H. and Rezazadeh, G., ”Static Pull-in Analysis of Capacitive FGM Nanocantilevers Subjected to Thermal Moment using Eringen’s Nonlocal Elasticity”, International Journal of Engineering-Transactions A: Basics, Vol. 27, No. 4, (2014), 633-642. DOI: 10.5829/idosi.ije.2014.27.04a.15
  17. Zhang, N. H. and Chen, J. Z., “Elastic bending analysis of bilayered beams by an alternative two-variable method”, European Journal of Mechanics, A/Solids, Vol. 28, No. 2, (2009), 284-288. DOI: 10.1016/j.euromechsol.2008.07.004
  18. Rastegarian, S. and Sharifi, A., “An Investigation on the Correlation of Inter-Story Drift and Performance Objectives in Conventional RC Frames”, Emerging Science Journal, Vol. 2, No. 3, (2018), 140-147. DOI: 10.28991/esj-2018-01137
  19. Zhang, N. H. and Xing, J. J., “An alternative model for elastic bending deformation of multilayered beams”, Journal of Applied Physics, Vol. 100, No. 10, (2006), 103519.1-103519.5. DOI: 10.1063/1.2372578
  20. Hsueh, C. H., “Thermal stresses in elastic multilayer systems”, Thin Solid Films, Vol. 418, No. 2, (2002), 182-188. DOI: 10.1016/S0040-6090(02)00699-5
  21. Hsueh, C. H., “Stress distribution and curvature in graded semiconductor layers”, Journal of Crystal Growth, Vol. 258, No. 3-4, (2003), 302-309. DOI: 10.1016/S0022-0248(03)01563-X
  22. Hsueh, C. H., and Lee, S., “Modeling of elastic thermal stresses in two materials joined by a graded layer”, Composites Part B-Engineering, Vol. 34, No. 8, (2003), 747-752. DOI: 10.1016/S1359-8368(03)00088-X
  23. Chuang, T. J. and Lee, S., “Elastic flexure of bilayered beams subject to strain differentials”, Journal of Materials Research, Vol. 15, No. 12, (2000), 2780-2788. DOI: 10.1557/JMR.2000.0397
  24. Deshpande, M. and Saggere, L., “PZT thin films for low voltage actuation: Fabrication and characterization of the transverse piezoelectric coefficient”, Sensors & Actuators A, Vol. 135, No. 2, (2007), 690-699. DOI: 10.1016/j.sna.2006.07.022