Functionalized Graphene Oxide/Polyacrylonitrile Nanofibrous Composite: Pb2+ and Cd2+ Cations Adsorption

Document Type : Original Article

Authors

1 Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran

2 Department of Textile Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran

3 Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran / Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran

4 Environmental Research Center, Department of Applied Chemistry, Razi University, Kermanshah, Iran

5 Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran

Abstract

In this research, graphene oxide (GO) was functionalized by tannic acid to produce GO-TA and fabricate a novel functionalized graphene oxide/ polyacrylonitrile (PAN) nanofibrous as an adsorbent in order to remove two hazardous heavy metals from aqueous solutions. The results showed that the composite adsorbent can properly adsorb Pb2+ and Cd2+ metal cations, due to having the numerous potential active sites. The optimum conditions for 97.37% of Pb2+ and 94.28% of Cd2+ ions removal were meanly obtained at pH of 6.3, nanoparticles weight percentage of 4.26 wt.%, metal ions concentration of 35.74 ppm and contact time of 70.5 min. The maximum adsorption capacities for lead and cadmium ions.were found at 344.83 and 312.5 mg/g, respectively.

Keywords


 
1. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F.
Miao, C.N. Lau, Superior thermal conductivity of single-layer
graphene, Nano Letters Vol. 8, No. 3 (2008) 902–907.
doi:10.1021/nl0731872. 
2. C. Feng, N. Sugiura, S. Shimada, T. Maekawa, Development of a
high performance electrochemical wastewater treatment system,
Journal of Hazardous Materials, Vol. 103, No. 1-2, (2003) 65-78.
doi:10.1016/S0304-3894(03)00222-X. 
3. H.A. Qdais, H. Moussa, Removal of heavy metals from wastewater
by membrane processes: A comparative study, Desalination. 164
(2004) 105-110. doi:10.1016/S0011-9164(04)00169-9. 
4. Sivakumar, D., D. Shankar, V. Gomathi, and A. Nandakumaar.
"Application of electro-dialysis on removal of heavy metals."
Pollution Research, Vol. 33, (2014), 627-637. 
5. J.Y. Bae, H.J. Lee, W.S. Choi, Cube sugar-like sponge/polymer
brush composites for portable and user-friendly heavy metal ion
adsorbents, Journal of Hazardous Materials, Vol. 320, (2016)
133-142. doi:10.1016/j.jhazmat.2016.07.067. 
6. R. Tovar-Gómez, M. del R. Moreno-Virgen, J. Moreno-Pérez, A.
Bonilla-Petriciolet, V. Hernández-Montoya, C.J. Durá
Analysis of synergistic and antagonistic adsorption of heavy metals
and acid blue 25 on activated carbon from ternary systems,
Chemical Engineering Research and Design, Vol. 93, (2015)
755-772. doi:10.1016/j.cherd.2014.07.012. 
7. A.K. Geim, K.S. Novoselov, The rise of graphene, Nature
Materials, Vol. 6, (2007), 183-191. doi:10.1038/nmat1849. 
8. R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann,
A. Gagor, B. Feist, R. Wrzalik, Adsorption of divalent metal ions
from aqueous solutions using graphene oxide, Dalton
Transactions, Vol. 42, No. 16 (2013) 5682-5689.
doi:10.1039/c3dt33097d. 
9. K. Manzoor, M. Ahmad, S. Ahmad, S. Ikram, Removal of Pb(ii)
and Cd(ii) from wastewater using arginine cross-linked chitosancarboxymethyl cellulose beads as green adsorbent, RSC Advances,Vol.9No.14,(2019),7890–7902.doi:10.1039/C9RA00356H.
10. L. Hao, H. Song, L. Zhang, X. Wan, Y. Tang, Y. Lv, SiO
2/graphene composite for highly selective adsorption of Pb(II) ion,
Journal of Colloid and Interface Science, Vol. 369, No. 1, (2012),
381-387. doi:10.1016/j.jcis.2011.12.023. 
11. X. Weng, J. Wu, L. Ma, G. Owens, Z. Chen, Impact of synthesis
conditions on Pb(II) removal efficiency from aqueous solution by
green tea extract reduced graphene oxide, Chemical Engineering
Journal, Vol. 359, (2019), 976-981.
doi:10.1016/j.cej.2018.11.089. 
12. A. Üçer, A. Uyanik, Ş.F. Aygün, Adsorption of Cu(II), Cd(II),
Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised
activated carbon, Separation and Purification Technology, Vol.
47, (2006) 113-118. doi:10.1016/j.seppur.2005.06.012. 
13. T. Pekdemir, S. Tokunaga, Y. Ishigami, K.J. Hong, Removal of
cadmium or lead from polluted water by biological amphiphiles,
Journal of Surfactants and Detergents, Vol. 3, No. 1, (2000), 4346.
doi:10.1007/s11743-000-0111-6.
14. J. Chen, B. Yao, C. Li, G. Shi, An improved Hummers method for
eco-friendly synthesis of graphene oxide, Carbon N. Y. 64 (2013)
225–229. doi:10.1016/j.carbon.2013.07.055. 
15. I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum., Journal of the American Chemical society
Vol. 40, No. 9, (1918), 1361-1403. doi:10.1021/ja02242a004. 
16. Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by
peat, Chemical Engineering Journal, Vol. 70, (1998), 115-124.
doi:10.1016/S1385-8947(98)00076-X. 
17. M.R. Karim, M.O. Aijaz, N.H. Alharth, H.F. Alharbi, F.S. AlMubaddel,
M.R. Awual, Composite nanofibers membranes of
poly(vinyl alcohol)/chitosan for selective lead(II) and cadmium(II)
ions removal from wastewater, Ecotoxicology and Environmental
Safety, Vol. 169, (2019) 479-486.
doi:10.1016/j.ecoenv.2018.11.049. 
18. R. Zhao, X. Li, B. Sun, M. Shen, X. Tan, Y. Ding, Z. Jiang, C.
Wang, Preparation of phosphorylated polyacrylonitrile-based
nanofiber mat and its application for heavy metal ion removal,
Chemical Engineering Journal, Vol. 268, (2015), 290-299.
doi:10.1016/j.cej.2015.01.061. 
19. B. Sun, X. Li, R. Zhao, M. Yin, Z. Wang, Z. Jiang, C. Wang,
Hierarchical aminated PAN/γ-AlOOH electrospun composite
nanofibers and their heavy metal ion adsorption performance,
Journal of the Taiwan Institute of Chemical Engineers, Vol. 62
(2016) 219-227. doi:10.1016/j.jtice.2016.02.008. 
20. M. Aliabadi, M. Irani, J. Ismaeili, H. Piri, M.J. Parnian,
Electrospun nanofiber membrane of PEO/Chitosan for the
adsorption of nickel, cadmium, lead and copper ions from aqueous
solution, Chemical Engineering Journal, Vol. 220, (2013), 237243.
doi:10.1016/j.cej.2013.01.021.