Development of Linear Vernier Hybrid Permanent Magnet Machine for Wave Energy Converter

Document Type : Original Article

Authors

Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran

Abstract

Today, due to the limited supply and rapid consumption of fossil fuels, transitioning towards renewable energy supplies has become more important than ever.. The purpose of this paper is to present a new linear permanent magnet vernier machine structure which is designed to capture wave energy and improve the performance of the prototype vernier machine. By halving the proposed vernier machine, amending gear ratio and changing the shape of permanent magnet (PM) and teeth, the performance of the proposed vernier machine increases compared to the prototype vernier machine. This novelty causes the proposed vernier machine to be lighter, more economical and more efficient than the prototype vernier machine. Moreover, the main parameters of the proposed vernier machine compared to the prototype vernier machine are improved, so that in the proposed vernier machine, induced voltage, PM flux and thrust force are increased by 30, 68 and 27% respectively. In addition, the ripple of thrust force is reduced by 5%,  and the self-inductance is diminished by 55%. All analyses have been performed in the same conditions with the finite element method using Ansys Maxwell software.

Keywords


 
1. Nazir, C.P., "Solar Energy for Traction of High Speed Rail
Transportation: A Techno-economic Analysis", Civil
Engineering Journal, Vol. 5, No. 7, (2019). DOI: 10.28991/cej2019-03091353.
2. Bayani, R., Farhadi, M., Shafaghat, R., and Alamian, R.,
"Experimental Evaluation of IRWEC1, a Novel Offshore Wave
Energy Converter", International Journal of Engineering
Transactions C: Aspects, Vol. 29, No. 9, (2016), 1292-1299. 
3. Falnes, J., "A review of wave-energy extraction", Marine
Structures, Vol. 20, No. 4 (2007), 185-201.  
4.  M. A. Mueller et al., "Experimental tests of an air-cored P.M
tubular generator for direct drive wave energy converters", in IET
Conference Publications, (2008). DOI:10.1049/cp:20080621. 
5. López, I., Andreu, J., Ceballos, S., Martínez De Alegría, I. and
Kortabarria, I., "Review of wave energy technologies and the
necessary power-equipment", Renewable and Sustainable
Energy Reviews, Vol. 27, (2013), 413–434.  
6. C. A. Oprea, C. S. Martis, F. N. Jurca, D. Fodorean, and L. Szabó.,
"Permanent magnet linear generator for renewable energy
applications: Tubular vs. four-sided structures", in 3rd
International Conference on Clean Electrical Power: Renewable
Energy Resources Impact, ICCEP 2011, (2011), 588–592.  
7. Rahman, M., Ong, Z.C., Julai, S., Ferdaus, M.M., and Ahamed,
R., "A review of advances n magnetorheological dampers: their
design optimization and applications", Journal of Zhejiang
University SCIENCE A, Vol. 4, No. 12, (2017).
DOI:10.1631/jzus.A1600721. 
8. Moradi CheshmehBeigi, H., "Slotless tubular PM generator with
dual quasi-Halbach magnetized PM Array: Analytical and
numerical magnetic field analysis", International Journal of
Numerical Modelling: Electronic Networks, Devices and Fields,
Vol. 33, No. 2 (2019). DOI:10.1002/jnm.2569. 
9. Hemmati, R., and Rahideh, A., "Optimal design of slotless tubular
linear brushless PM machines using metaheuristic optimization
techniques", Journal of Intelligent & Fuzzy Systems, Vol. 32,
No. 1, (2017). 351-362. DOI:10.3233/JIFS-151847. 
10. Almoraya, A.A., Baker, N.J., Smith, K.J. and Raihan, M.A.H., 
"Development of a double-sided consequent pole linear vernier
hybrid permanent-magnet machine for wave energy converters",
in 2017 IEEE International Electric Machines and Drives
Conference, IEMDC 2017, (2017).
DOI:10.1109/IEMDC.2017.8002157. 
11. Almoraya, A.A., Baker, N.J., Smith, K.J., and Raihan, M.A.H.,
"Design and Analysis of a Flux-Concentrated Linear Vernier
Hybrid Machine with Consequent Poles", IEEE Transactions on
Industry Applications, Vol. 55, No. 5, (2019), 4595-4604.
DOI:org/10.1109/TIA.2019.2918499. 
12. Ardestani, M.,  Arish, N. and Yaghobi, H., "A new HTS dual 
stator linear permanent magnet Vernier machine with Halbach
array for wave energy conversion", Physica C:
Superconductivity and its Applications, Vol. 567, No. 12, (2020).
p.1353593. DOI:10.1016/j.physc.2019.1353593. 
13. Baloch, N., Khaliq, S. and Kwon, B., "HTS dual-stator spoke-type
linear vernier machine for leakage flux reduction", IEEE
Transactions on Magnetics, Vol. 53, No. 11, (2017), 1-4.  
14. Arish, N., Yaghobi, H. and Teymoori, V., "Optimization and
Comparison of New Linear Permanent Magnet Vernier
Machine", in 27th Iranian Conference on Electrical Engineering
(ICEE). (2019), 657-661.   
15. Arish, N., Teymoori, V., Yaghobi, H. and Moradi, M., " Design
of New Linear Vernier Machine with Skew and Halbach
Permanent Magnet for Wave Energy Converter", 34 th P ower
System Conference  (PSC), (2019). 
16. Bian, F. and Zhao, W., "A new dual stator linear permanentmagnet
vernier machine with reduced copper loss", AIP
Advances, Vol. 7, No. 5, (2017). DOI:10.1063/1.4978589. 
17. Zhao, W., Zheng, J., Wang, J., Liu, G., Zhao, J. and Fang, Z.,
"Design and analysis of a linear permanent- magnet vernier
machine with improved force density", IEEE Transactions on
Industrial Electronics, Vol. 63, No. 4, (2016), 2072-2082.  
18. Nematsaberi, A. and Faiz, J., "A Novel Linear Stator-PM Vernier
Machine With Spoke- Type Magnets", IEEE Transactions on
Magnetics, Vol. 54, No. 11, (2018), 1-5.  
19. Shafaie, R. and Kalantar, M., "Comparison of theoretical and
numerical electromagnetic modeling for HTS synchronous
generator", IEEE Transactions on Applied Superconductivity,
Vol. 25, No. 1, (2015), 1-7.  
20. Ainslie, M.D. and Fujishiro, H., "Modelling of bulk
superconductor magnetization", Superconductor Science and 
Technology, Vol. 27, No. 5, (2015) 053002. DOI:10.1088/09532048/28/5/053002.
21. Grilli, F., Brambilla, and Martini, L., "Modeling high-temperature
superconducting tapes by means of edge finite elements", IEEE
Transactions on Applied Superconductivity, Vol. 17, No. 2, 
(2007) 3155-3158.  
22. A. N. Patel and B. N. Suthar, "Cogging torque reduction of
sandwiched stator axial flux permanent magnet brushless dc
motor using magnet notching technique", International Journal
of Engineering Transaction A: Basics, Vol. 32, No. 7, (2019),
940-946.  
23. Liu, G., Ding, L., Zhao, W., Chen, Q. and Jiang, S., "Nonlinear
equivalent magnetic network of a linear permanent magnet
vernier machine with end effect consideration" IEEE
Transactions on Magnetics, Vol. 54, No. 1, (2018).
DOI:10.1109/TMAG.2017.2751551. 
24. Li, D., Qu, R. and Lipo, T.A., "High-power-factor vernier
permanent-magnet machines", IEEE Transactions on Industry
Applications, Vol. 50, No. 6, (2014), 3664-3674.  
25. Moradi Cheshmeh Beigi, H., "Design,. optimization and FEM
analysis of a surface-mounted permanent-magnet brushless DC
motor", International Journal of Engineering, Transaction B:
Applications, Vol. 31, No. 2, (2018), 339-345.  
26. A. N. Patel and B. N. Suthar, "Cogging torque reduction of
sandwiched stator axial flux permanent magnet brushless dc
motor using magnet notching technique", International Journal
of Engineering Transaction A: Basics, Vol. 32, No. 7, (2019),
940-946.