Encapsulation of Food Components and Bioactive Ingredients and Targeted Release

Document Type : Original Article

Authors

Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran

Abstract

The potential utilization of encapsulation techniques in food, pharmaceutical and agricultural products preparation, presents a new alternative for complementary technologies such as targeting delivery vehicles and carriers for active food ingredients. Encapsulation could be accomplished by different techniques like: simple or complex coacervation, emulsification technique, phase separation, spray drying, spray chilling or spray cooling, extrusion coating, freeze drying, fluidized-bed coating, liposomal entrapment, centrifugal suspension separation, co-crystallization and molecular inclusion complexation. Encapsulation is a method by which one bioactive material or mixture of materials is coated by the other material. It is designed for protection, isolation, assists in the storage and controlled release. A timely and targeted release improves the effectiveness of ingredients, broadens the application and ensures optimal dosage, thereby improving cost-effectiveness process for manufacturers. This review highlights recent innovations in encapsulation and controlled release technologies. In addition, design principle of novel peppermint oil delivery systems which displays the new structured biomaterials for capsules fabrication by complex coacervation technique, besides microemulsification method for bioactive material, Lactobacillus encapsulation and targeted release studies reported. 

Keywords


1. Bawa, R., Bawa, S. R., Maebius, S. B., Flynn, T. and Wei, C.,
“Protecting new ideas and inventions in nanomedicine with
patents”, Nanomedicine: NBM, Vol. 1, No. 2, (2005), 150-158. 
2. Kuan, C. Y., Yee-Fung, W., Yuen, K. H. and Liong, M. T.,
“Nanotech: propensity in foods and bioactives”, Critical
Reviews in Food Science and Nutrition, Vol. 52, No. 1, (2012),
55-71.  
3. Ezhilarasi, P. N., Karthik, P., Chhanwal, N. and
Anandharamakrishnan, C., “Nanoencapsulation techniques for
food bioactive components: a review”, Food Bioprocess
Technology, Vol. 6, No. 3, (2013), 628-647.  
4. Huang, Q., Yu, H. and Ru, Q., “Bioavailability and delivery of
nutraceuticals using nanotechnology”, Journal of Food
Science, Vol. 75, No. 1, (2010), 50-57.  
5. McClements, D. J., Decker, E. A., Park, Y. and Weiss, J.,
“Structural design principles for delivery of bioactive
components in nutraceuticals and functional foods”, Critical
Reviews in Food Science and Nutrition, Vol. 49, No. 6, (2009),
577-606. 
6. Silva, H. D., Cerqueira, M. Â. And Vicente, A. A.,
“Nanoemulsions for food applications: development and
characterization”, Food Bioprocess Technology, Vol. 5, No. 3,
(2012), 854-867  . 
7. Chen, L., Remondetto, G. E. and Subirade, M., “Food proteinbased
materials as nutraceutical delivery systems”, Trends in
Food Science and Technology, Vol. 17, No. 5, (2006), 272-283  . 
8. Sanguansri, P. and Augustin, M. A., “Nanoscale materials
development–a food industry perspective”, Trends in Food
Science and Technology, Vol. 17, No. 10, (2006), 547-556  . 
9. Sozer, N., and Kokini, J. L., “Nanotechnology and its
applications in the food sector”, Trends in Biotechnology, Vol.
27, No. 2, (2009), 82-89. 
10. Weiss, J., Takhistov, P. and McClements, D. J., “Functional
materials in food nanotechnology”, Journal of Food Science,
Vol. 71, No. 9, (2006), 107-116  . 
11. Vaziri, A. S., Alemzadeh, I., Vossoughi, M. and Khorasani, A.
C., “Co-microencapsulation of Lactobacillus plantarum and
DHA fatty acid in alginate-pectin-gelatin biocomposites”,
Carbohydrate Polymers, Vol. 199, (2018), 266-275  . 
12. Vaziri, A. S., Alemzadeh, I. and Vossoughi, M., “Improving
survivability of Lactobacillus plantarum in alginate-chitosan
beads reinforced by Na-tripolyphosphate dual cross-linking”,
LWT - Food Science and Technology, Vol. 97, (2018), 440447
.
13. Anandharamakrishnan, C., “Techniques for nanoencapsulation
of food ingredients”. New York: Springer, Nature America, Inc
(2014). 
14. Karimi, N., Ghanbarzadeh, B., Hamishehkar, H., Keivani, F.,
Pezeshki, A. and Gholian, M. M., “Phytosome and liposome: the
beneficial encapsulation systems in drug delivery and food
application”, Applied Food Biotechnology, Vol. 2, No. 3,
(2015), 17-27  . 
15. Attama, A. A., Momoh, M. A. and Builders, P. F., “Lipid
nanoparticulate drug delivery systems: a revolution in dosage
form design and development”, In Tech, Croatia, Google
Scholar, (2012), 107–140  
16. Konan, Y. N., Gurny, R. and Allémann, E., “Preparation and
characterization of sterile and freeze-dried sub-200 nm
nanoparticles”, International Journal of Pharmaceutics, Vol.
233, No. 1-2, (2002), 239-252. 
17. Orive, G., Anitua, E., Pedraz, J. L. and Emerich, D. F.,
“Biomaterials for promoting brain protection, repair and
regeneration”, Nature Reviews Neuroscience, Vol. 10, No. 9,
(2009), 682  . 
18. Kasote, D. M., Jayaprakasha, G. K. and Patil, B. S.,
“Encapsulation of Polyphenols: An Effective Way to Enhance
Their Bioavailability for Gut Health” In Advances in Plant
Phenolics: From Chemistry to Human Health, American
Chemical Society, (2018), 239-259  . 
19. Kawashima, Y., “nanoparticulate systems for improved drug
delivery”, Advanced Drug Delivery Reviews, Vol. 47, No. 1,
(2001), 1-2 . 
20. Hughes, G. A., “Nanostructure-mediated drug delivery”,In
Nanomedicine in Cancer. Pan Stanford, Vol. 1, (2017), 22-30  . 
21. Mozafari, M. R., “Bioactive entrapment and targeting using
nanocarrier technologies: an introduction”, In Nanocarrier
technologies, Eds., Springer, Netherlands, (2006), 1-16  . 
22. Shefer, A. and Shefer, S., “The application of nanotechnology in
the food industry (2008)  . 
23. Bozorg, A., Vossoughi, M., Kazemi, A. and Alemzadeh, I.,
“Optimal medium composition to enhance poly-βhydroxybutyrate
production
by Ralstonia eutropha using cane
molasses as sole carbon source”, Applied Food Biotechnology,
Vol. 2, No. 3, (2015), 39-47  
24. Pakzad, H., Alemzadeh, I. and Kazemi, A., “Immobilization of
Peppermint flavor and property determination”, 20th National
Food Conference, Tehran, Iran, December (2012) 
25. Bahraman, F. and Alemzadeh, I., “Optimization of Lasparaginase
immobilization onto calcium alginate beads”,
Chemical Engineering Communications, Vol. 204, No. 2,
(2017), 216-220. 
26. Vossoughi, A. and Matthew, H. W., “Encapsulation of
mesenchymal stem cells in glycosaminoglycans‐chitosan
polyelectrolyte microcapsules using electrospraying technique:
Investigating capsule morphology and cell viability”,
Bioengineering & Translational Medicine, Vol. 3, No. 3,
(2018), 265-274  . 
27. Desai, K. G. H. and Jin Park, H., “Recent developments in
microencapsulation of food ingredients”, Drying Technology,
Vol. 23, No. 7, (2005) ,1361-1394  
28. Lopez-Rubio, A., Gavara, R. and Lagaron, J. M., “Bioactive
packaging: turning foods into healthier foods through
biomaterials”, Trends in Food Science and Technology, Vol.
17, No. 10, (2006), 567-575  
29. Gouin, S., “Microencapsulation: industrial appraisal of existing
technologies and trends”, Trends in Food Science and
Technology, Vol. 15, No. 7-8, (2004), 330-347  
30. Shegokar, R. and Müller, R. H., “Nanocrystals: industrially
feasible multifunctional formulation technology for poorly
soluble actives”, International Journal of Pharmaceutics, Vol.
399, No. 1-2, (2010), 129-139  
31. Chen, M. J., “Development and parametric studies of carbon
nanotube dispersion using electrospraying”. MS Thesis, Florida
State University (2007) .  
32. Lakkis, J. M., “Encapsulation and controlled release
technologies in food systems”. Blackwell Publishing, Oxford,
U.K., (2007), 265  
33. Teeranachaideekul, V., Müller, R. H. and Junyaprasert, V. B.,
“Encapsulation of ascorbyl palmitate in nanostructured lipid
carriers (NLC)—effects of formulation parameters on
physicochemical stability”, International Journal of
Pharmaceutics, Vol. 340, No. 1-2, (2007), 198-206  
34. Dube, A., Ng, K., Nicolazzo, J. A. and Larson, I., “Effective use
of reducing agents and nanoparticle encapsulation in stabilizing
catechins in alkaline solution”, Food Chemistry, Vol. 122, No.
3, (2010), 662-667. 
35. Ferreira, I., Rocha, S. and Coelho, M., “Encapsulation of
antioxidants by spray-drying”, Chemical Engineering
Transactions, Vol. 11, No. 9, (2007), 713-717  
36. Heyang, J. I. N., Fei, X. I. A., Jiang, C., Yaping, Z. H. A. O. and
Lin, H. E., “Nanoencapsulation of lutein with
hydroxypropylmethyl cellulose phthalate by supercritical
antisolvent”, Chinese Journal of Chemical Engineering, Vol.
17, No. 4, (2009), 672-677  
37. Zimet, P. and Livney, Y. D., “Beta-lactoglobulin and its
nanocomplexes with pectin as vehicles for ω-3 polyunsaturated
fatty acids”, Food Hydrocolloids, Vol. 23, No. 4, (2009), 11201126
 
38. Leong, W. F., Lai, O. M., Long, K., Man, Y. B. C., Misran, M.
and Tan, C. P., “Preparation and characterisation of watersoluble
phytosterol nanodispersions”, Food Chemistry, Vol.
129, No. 1, (2011), 77-83  
39. Kuang, S. S., Oliveira, J. C. and Crean, A. M.,
“Microencapsulation as a tool for incorporating bioactive
ingredients into food”, Critical Reviews in Food Science and
Nutrition, Vol. 50, No. 10, (2010), 951-968 .  
40. Ravi Kumar, M. N. and Kumar, N., “Polymeric controlled drugdelivery
systems: perspective issues and opportunities”, Drug
Development and Industrial Pharmacy, Vol. 27, No. 1, (2001),
1-30  
41. Varma, M. V., Kaushal, A. M. and Garg, A.; Garg, S., “Factors
affecting mechanism and kinetics of drug release from matrix based
oral controlled drug delivery systems”, American Journal of Drug Delivery,Vol.2,No.1,(2004),43-57
42. Acosta, E., “Bioavailability of nanoparticles in nutrient and
nutraceutical delivery”, Current Opinion in Colloid & Interface
Science, Vol. 14, No. 1, (2009), 3-15  
43. Reis, C. P., Neufeld, R. J., Ribeiro, A. J. and Veiga, F.,
“Nanoencapsulation I. Methods for preparation of drug-loaded
polymeric nanoparticles”, Nanomedicine: NBM, Vol. 2, No. 1,
(2006), 8-21. 
44. Oluk, C.A. and Karaca, O. B., “Functional food ingredients and
nutraceuticals, milk proteins as nutraceuticals nanoscience and
food industry”, Chapter 18, Nutraceuticals, (2016) 715-759  
45. Graveland-Bikker, J. F. and De Kruif, C. G., “Unique milk
protein based nanotubes: food and nanotechnology meet”,
Trends in Food Science and Technology, Vol.17, No. 5, (2006)
,196-203  
46. Pakzad, H., Alemzadeh, I. and Kazemi, A., “Encapsulation of
peppermint oil with arabic gum-gelatin by complex coacervation
method”. International Journal of Engineering, Transactions
B: Applications, Vol. 26, (2013), 807-814  . 
47. Bakan, J. A., “Microencapsulation of foods and related
products”, Food technology, Vol 27, (1973), 34-45  
48. Korus, J., “Microencapsulation of flavours in starch matrix by
coacervation method”, Polish Journal of Food and Nutrition
Sciences, Vol.1, No. 10, (2001), 17–23  
49. Quintanilla-Carvajal, M. X., Camacho-Díaz, B. H., MerazTorres,
L. S., Chanona-Pérez, J. J., Alamilla-Beltrán, L.,
Jimenéz-Aparicio, A. and Gutiérrez-López, G. F.,
“Nanoencapsulation: a new trend in food engineering
processing”, Food Engineering Reviews, Vol. 2, No. 1, (2010),
39-50  
50. Jyothi, N. V., Prasanna, M., Prabha, S., Ramaiah, P. S., Srawan,
G. and Sakarkar, S. N., “Microencapsulation Techniques,
Factors Influencing Encapsulation Efficiency: A Review”,
International Journal of Nanotechnology, Vol. 3, (2009), 1-31  
51. Atmane, M., Muriel, J., Joe, S. and Ste´phane, D., “Flavour
encapsulation and controlled release – a review”, International
Journal of Food Science & Technology, Vol. 41, (2006), 1–21 .  
52. Dong, Z. J., Xia, S. Q., Hua, S., Hayat, K., Zhang, X. M. and
Xu, S. Y., “Optimization of cross-linking parameters during
production of transglutaminase-hardened spherical multinuclear
microcapsules by complex coacervation”, Colloids and Surfaces
B: Biointerfaces, Vol. 63, No. 1, (2008), 41-47. 
53. Dong, Z. J., Toure, A., Jia, C. S., Zhang, X. M. and Xu, S. Y.,
“Effect of processing parameters on the formation of spherical
multinuclear microcapsules encapsulating peppermint oil by
coacervation”, Journal of Microencapsulation, Vol. 24, No. 7,
(2007), 634-646  
54. Xing, F., Cheng, G., Yang, B. and Ma, L., “Microencapsulation
of capsaicin by the complex coacervation of gelatin, acacia and
tannins”, Journal of Applied Polymer Science, Vol. 91, No. 4,
(2004), 2669-2675  
55. Hayashi, H., “Drying technologies of foods-their history and
future”, Drying Technology, Vol. 7, No. 2, (1989), 315-369  
56. Ghosh, S. K., “Functional coatings and microencapsulation: a
general perspective”. Functional coatings, WILEY-VCH,
(2006), 1-28  
57. Teixeira, M. I., Andrade, L. R., Farina, M. and Rocha-Leão, M.
H. M., “Characterization of short chain fatty acid microcapsules
produced by spray drying”, Materials Science and Engineering
C, Vol. 24, No. 5, (2004), 653-658  
58. de Vos, P., Faas, M. M., Spasojevic, M. and Sikkema, J.,
“Encapsulation for preservation of functionality and targeted
delivery of bioactive food components”, International Dairy
Journal, Vol. 20, No. 4, (2010), 292-302. 
59. Mortenson, M. A. and Reineccius, G. A., “Encapsulation and
release of menthol. Part 1: the influence of OSAn modification
of carriers on the encapsulation of l‐menthol by spray drying”,
Flavour and Fragrance Journal, Vol. 23, No. 6, (2008), 392397
 
60. Okuro, P. K., de Matos Junior, F. E. and Favaro-Trindade, C. S.,
“Technological challenges for spray chilling encapsulation of