Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 29, No. 7 (July 2016) 921-930    Article in Press

PDF URL: http://www.ije.ir/Vol29/No7/A/6-2298.pdf  
downloaded Downloaded: 893   viewed Viewed: 3863

  ANALYSIS OF PRE-PROCESSING AND POST-PROCESSING METHODS AND USING DATA MINING TO DIAGNOSE HEART DISEASES
 
H. Hamidi and A. Daraei
 
( Received: March 27, 2016 – Accepted in Revised Form: June 02, 2016 )
 
 

Abstract    Today, a great deal of data is generated in the medical field. Acquiring useful knowledge from this raw data requires data processing and detection of meaningful patterns and this objective can be achieved through data mining. Using data mining to diagnose and prognose heart diseases has become one of the areas of interest for researchers in recent years. In this study, the literature on the application of classification algorithms for heart disease will be reviewed. The present study is an attempt to evaluate the studies carried out in this field so that the results of this review may lead to development of a clear view on the future studies. Here, first, the major medical tasks are specified and then, each article is investigated based on these tasks. Finally, some results, in terms of frequency algorithms in the use of classification algorithms, pre-processing and post-processing methods, will be provided. In this study, 49 articles obtained from similar studies with related subject matters, (from 2003 to 2015) are collected and reviewed. Obviously, the number of articles on applications of classification algorithms in heart disease is quite significant, therefore, it is impossible to review all of them in the present study. It is hoped that this study can provide results that pave the path for future research and further developments in this area.

 

Keywords    : Data mining; Classification; Heart disease; Diagnosis; Prognosis; Treatment.

 

چکیده    امروز، در زمینه پزشکی حجم زیادی داده تولید می شود. کسب دانش مفید از این داده های خام، نیازمند پردازش داده ها و تشخیص الگوهای بامعنی می باشد و این هدف با استفاده از داده کاوی قابل دستیابی است. استفاده از داده کاوی برای تشخیص و پیش بینی بیماری های قلبی، در سال های اخیر یکی از زمینه های مورد علاقه محققان بوده است. در این مطالعه، مروری بر کاربرد الگوریتم های دسته بندی در بیماری های قلبی انجام شده است. مطالعه حاضر، تلاشی برای ارزیابی مطالعات انجام شده در این زمینه می باشد، به طوریکه نتایج حاصل از این بررسی می تواند به دید واضح و روشنی برای مطالعات آینده منجر شود. در ابتدا، وظایف اصلی پزشکی مشخص شده و پس از آن، هر مقاله بر اساس این وظایف بررسی شده است. در نهایت، نتایج از نظر فراوانی استفاده از الگوریتم های دسته بندی، روش های پیش پردازش و پس پردازش، ارائه شده اند. در این مطالعه، 49 مقاله از مطالعات مشابه و با موضوعات مرتبط (از سال2003 تا 2015) جمع آوری و بررسی شده است. بدیهی است که تعداد مقالات در مورد استفاده از الگوریتم های دسته بندی در بیماری های قلبی بسیار قابل توجه است، بنابراین، بررسی همه آنها در مطالعه حاضر، غیر ممکن می باشد. امید است که نتایج این مطالعه، مسیری برای پیشرفت های تحقیقاتی بیشتر در آینده در این حوزه فراهم نماید.

References   

1.     Esfandiari, N., Babavalian, M. R., Moghadam, A.-M. E. and Tabar, V. K., "Knowledge discovery in medicine: Current issue and future trend", Expert Systems with Applications,  Vol. 41, No. 9, (2014), 4434-4463.

2.     Purusothaman, G. and Krishnakumari, P., "A survey of data mining techniques on risk prediction: Heart disease", Indian Journal of Science and Technology,  Vol. 8, No. 12, (2015).

3.     Kumar, S. and Sahoo, G., Classification of heart disease using naive bayes and genetic algorithm, in Computational intelligence in data mining, Vol. 2, (2015), Springer, 269-282.

4.     Fayyad, U. and Uthurusamy, R., "Data mining and knowledge discovery: Making sense out of data",  Vol. 39, No. 11, (1996), 24-26.

5.     Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C. and Wirth, R., "CRISP-DM 1.0 step-by-step data mining guide", (2000).

6.     Pedreira, C. E., Macrini, L. and Costa, E. S., "Input and data selection applied to heart disease diagnosis", in Proceedings. IEEE International Joint Conference on Neural Networks, Vol. 4, (2005), 2389-2393.

7.     Patil, S. B. and Kumaraswamy, Y., "Intelligent and effective heart attack prediction system using data mining and artificial neural network", European Journal of Scientific Research,  Vol. 31, No. 4, (2009), 642-656.

8.     Srinivas, K., Rani, B. K. and Govrdhan, A., "Applications of data mining techniques in healthcare and prediction of heart attacks", International Journal on Computer Science and Engineering (IJCSE),  Vol. 2, No. 02, (2010), 250-255.

9.     Amma, N. B., "Cardiovascular disease prediction system using genetic algorithm and neural network", in International Conference on Computing, Communication and Applications, IEEE, (2012), 1-5.

10.   Arif, M., Malagore, I. A. and Afsar, F. A., "Automatic detection and localization of myocardial infarction using back propagation neural networks", in Bioinformatics and Biomedical Engineering (iCBBE), 4th International Conference on, IEEE, (2010), 1-4.

11.   Dangare, C. S. and Apte, S. S., "Improved study of heart disease prediction system using data mining classification techniques", International Journal of Computer Applications,  Vol. 47, No. 10, (2012), 44-48.

12.   Anooj, P., "Clinical decision support system: Risk level prediction of heart disease using weighted fuzzy rules", Journal of King Saud University-Computer and Information Sciences,  Vol. 24, No. 1, (2012), 27-40.

13.   Shao, Y. E., Hou, C.-D. and Chiu, C.-C., "Hybrid intelligent modeling schemes for heart disease classification", Applied Soft Computing,  Vol. 14, (2014), 47-52.

14.   Mahmoodabadi, Z. and Tabrizi, S. S., "A new efficient algorithm based on ica for diagnosis of coronary artery disease", International Journal of Telemedicine and Clinical Practices,  Vol. 1, No. 2, (2015), 157-173.

15.   Bhaskar, N. A., "Performance analysis of support vector machine and neural networks in detection of myocardial infarction", Procedia Computer Science,  Vol. 46, (2015), 20-30.

16.   Bashir, S., Qamar, U. and Khan, F. H., "A multicriteria weighted votebased classifier ensemble for heart disease prediction", Computational Intelligence, (2015).

17.   Arif, M., Malagore, I. A. and Afsar, F. A., "Detection and localization of myocardial infarction using k-nearest neighbor classifier", Journal of Medical Systems,  Vol. 36, No. 1, (2012), 279-289.

18.   Bhatla, N. and Jyoti, K., "A novel approach for heart disease diagnosis using data mining and fuzzy logic", International Journal of Computer Applications,  Vol. 54, No. 17, (2012).

19.   Dennis, B. and Muthukrishnan, S., "AGFS: Adaptive genetic fuzzy system for medical data classification", Applied Soft Computing,  Vol. 25, (2014), 242-252.

20.   Darvishi, A. and Hassanpour, H., "A geometric view of similarity measures in data mining", International Journal of Engineering-Transactions C: Aspects,  Vol. 28, No. 12, (2015), 1728.

21.   Esmaileyan, Z. and Marvi, H., "A database for automatic persian speech emotion recognition: Collection, processing and evaluation", International Journal of Engineering,  Vol. 27, (2013), 79-90.

22.   Fei, S.-w., "Diagnostic study on arrhythmia cordis based on particle swarm optimization-based support vector machine", Expert Systems with Applications,  Vol. 37, No. 10, (2010), 6748-6752.

23.   Qazi, M., Fung, G., Krishnan, S., Bi, J., Rao, R. B. and Katz, A. S., "Automated heart abnormality detection using sparse linear classifiers", IEEE Engineering in Medicine and Biology Magazine,  Vol. 26, No. 2, (2007), 56-63.

24.   Polat, K., Sahan, S. and Gunes, S., "Automatic detection of heart disease using an artificial immune recognition system (airs) with fuzzy resource allocation mechanism and K-NN (nearest neighbour) based weighting preprocessing", Expert Systems with Applications,  Vol. 32, No. 2, (2007), 625-631.

25.   Conforti, D., Costanzo, D. and Guido, R., "Medical decision making: A case study within the cardiology domain", Journal on Information Technology in Healthcare,  Vol. 5, No. 6, (2007), 343-356.

26.   Anbarasi, M., Anupriya, E. and Iyengar, N., "Enhanced prediction of heart disease with feature subset selection using genetic algorithm", International Journal of Engineering Science and Technology,  Vol. 2, No. 10, (2010), 5370-5376.

27.   Vijaya, K., Khanna Nehemiah, H., Kannan, A. and Bhuvaneswari, N., "Fuzzy neuro genetic approach for predicting the risk of cardiovascular diseases", International Journal of Data Mining, Modelling and Management,  Vol. 2, No. 4, (2010), 388-402.

28.   Rajkumar, A. and Reena, G. S., "Diagnosis of heart disease using datamining algorithm", Global Journal of Computer Science and Technology,  Vol. 10, No. 10, (2010), 38-43.

29.   Babaoglu, I., Baykan, O. K., Aygul, N., Ozdemir, K. and Bayrak, M., "Assessment of exercise stress testing with artificial neural network in determining coronary artery disease and predicting lesion localization", Expert Systems with Applications,  Vol. 36, No. 2, (2009), 2562-2566.

30.   Khemphila, A. and Boonjing, V., "Heart disease classification using neural network and feature selection", in Systems Engineering (ICSEng), 21st International Conference on, IEEE, (2011), 406-409.

31.   Lahsasna, A., Ainon, R. N., Zainuddin, R. and Bulgiba, A., "Design of a fuzzy-based decision support system for coronary heart disease diagnosis", Journal of Medical Systems,  Vol. 36, No. 5, (2012), 3293-3306.

32.   Peter, T. J. and Somasundaram, K., "Study and development of novel feature selection framework for heart disease prediction", International Journal of Scientific and Research Publications,  Vol. 2, No. 10, (2012), 1-7.

33.   Peter, T. J. and Somasundaram, K., "An empirical study on prediction of heart disease using classification data mining techniques", in Advances in Engineering, Science and Management (ICAESM), International Conference on, IEEE, (2012), 514-518.

34.   Muthukaruppan, S. and Er, M., "A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease", Expert Systems with Applications,  Vol. 39, No. 14, (2012), 11657-11665.

35.   Santhanam, T. and Ephzibah, E., ''Heart disease classification using PCA and feed forward neural networks'', in Mining intelligence and knowledge exploration, Springer, (2013), , 90-99.

36.   Patel, S. B., Yadav, P. K. and Shukla, D. D., "Predict the diagnosis of heart disease patients using classification mining techniques", IOSR Journal of Agriculture and Veterinary Science,  Vol. 4, No. 2, (2013), 61-64.

37.   Subanya, B. and Rajalaxmi, R., "Feature selection using artificial bee colony for cardiovascular disease classification", in Electronics and Communication Systems (ICECS), International Conference on, IEEE, (2014), 1-6.

38.   Krishnaraj, N. and Vinothkumar, M. R., "Heart disease prediction using ga and MLBPN", Heart Disease,  Vol. 2, No. 4, (2014).

39.   Wisaeng, K., "Predict the diagnosis of heart disease using feature selection and k-nearest neighbor algorithm", Applied Mathematical Sciences,  Vol. 8, No. 83, (2014), 4103-4113.

40.   Nguyen, T., Khosravi, A., Creighton, D. and Nahavandi, S., "Classification of healthcare data using genetic fuzzy logic system and wavelets", Expert Systems with Applications,  Vol. 42, No. 4, (2015), 2184-2197.

41.   Tan, P.-N., "Introduction to data mining'', Pearson Education India,  (2006).

42.   Shaeiri, Z. and Ghaderi, R., "Modification of the fast global K-means using a fuzzy relation with application in microarray data analysis", International Journal of Engineering-Transactions C: Aspects,  Vol. 25, No. 4, (2012), 283-292.

43.   Prati, R. C., Batista, G. E. and Monard, M. C., "A survey on graphical methods for classification predictive performance evaluation", IEEE Transactions on Knowledge and Data Engineering,  Vol. 23, No. 11, (2011), 1601-1618.

44.   Riano, D., Bohada, J. A., Collado, A. and Lopez-Vallverdu, J. A., "MPM: A knowledge-based functional model of medical practice", Journal of Biomedical Informatics,  Vol. 46, No. 3, (2013), 379-387.

45.   Yan, H., Zheng, J., Jiang, Y., Peng, C. and Li, Q., "Development of a decision support system for heart disease diagnosis using multilayer perceptron", in Circuits and Systems, ISCAS'03. Proceedings of the  International Symposium on, IEEE. Vol. 5, (2003), 709-712.

46.   Das, R., Turkoglu, I. and Sengur, A., "Effective diagnosis of

 

 

 

 

 

 

 

 

 

heart disease through neural networks ensembles", Expert Systems with Applications,  Vol. 36, No. 4, (2009), 7675-7680.

47.   Chu, C.-M., Chien, W.-C., Lai, C.-H., Bludau, H. B., Tschai, H.-J., Pai, L., Hsieh, S.-M., Chu, N. F., Klar, A. and Haux, R., "A bayesian expert system for clinical detecting coronary artery disease", Journal of Medical Sciences,  Vol. 29, No. 4, (2009), 187-194.

48.   Pal, D., Mandana, K., Pal, S., Sarkar, D. and Chakraborty, C., "Fuzzy expert system approach for coronary artery disease screening using clinical parameters", Knowledge-Based Systems,  Vol. 36, (2012), 162-174.

49.   Sanz, J. A., Galar, M., Jurio, A., Brugos, A., Pagola, M. and Bustince, H., "Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system", Applied Soft Computing,  Vol. 20, (2014), 103-111.


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir