Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 28, No. 1 (January 2015) 121-129   

PDF URL: http://www.ije.ir/Vol28/No1/A/16.pdf  
downloaded Downloaded: 269   viewed Viewed: 1189

  CFD SIMULATION OF A MULTI-MESH PULSE TUBE REGENERATOR (RESEARCH NOTE)
 
B. Moosavi, A. A. Alemrajabi, A. Jafarian and M. Arablu
 
( Received: May 07, 2013 – Accepted: September 18, 2014 )
 
 

Abstract    Abstract During the last two decades, inertance tube pulse tube cryocoolers (ITPTC) applications in astronautics instruments gained momentum due to their high reliability. Moreover, significant efforts were made in order to improve ITPTCs operation. Investigations showed that most losses occur in the regenerator part. Due to complexity of physics of these losses, effects of the regenerator efficiency on the cryocooler performance were investigated in this work. For calculating heat transfer between solid matrix and acting fluid in the regenerator, Dual Energy Equation (DEE) model was used. Calculation of entropy flow inside the regenerator showed that almost 85% of the energy losses are due to viscous and inertial losses besides most of the energy losses occur in its hot end. Therefore in order to optimize the system, multi-mesh regenerator was studied. Results showed that under fixed CHX wall temperature of 150 (K), COP of the PTC with optimum multi-mesh regenerator, is 1.07 times higher than the value of uniform mesh regenerator ITPTC. A precise agreement was observed between simulation results and available experimental data published in the literature.

 

Keywords    Pulse tube cryocooler, Multi mesh regenerator, Oscillating flow

 

چکیده    چكيده طي دو دهه اخير، سردساز لوله ضرباني لوله اينرتنسي به دليل قابليت اعتماد بالا کاربرد بسيار وسيعي در صنايع هوا فضا يافته است. به همين جهت تلاش هاي زيادي جهت توسعه اين سيستم صورت گرفته است. بررسي ها نشان داده است که بيشترين تلفات اين سيستم در قسمت بازياب که محيطي متخلخل است صورت مي گيرد. بدليل پيچيدگي فيزيک اين تلفات، اثرات بازده بازياب بر عملکرد سردساز با استفاده از روش CFD مورد بررسي قرار گرفت. جهت محاسبه انتقال حرارت چابجايي در محيط بازياب از هر دو روش تک معادله اي و دو معادله اي بهره گرفته شد. محاسبه نرخ توليد انتروپي در محيط متخلخل بازياب نشان داد که 85% تلفات بازياب ناشي از تلفات ويسکوز و اينرسيال است و همچنين مقدار اين تلفات در انتهاي گرم بازياب اتفاق مي افتد. بنابراين، جهت بهبود عملکرد سردساز روش بازياب با مش چندگانه مورد مطالعه قرار گرفت. نتايج حاصل از شبيه سازي ها تحت شرايط دمايي 150 کلوين ديواره CHX مقدار ضريب عملکرد سردساز با بازياب با مش چندگانه بهينه 07/1 برابر سردساز ساده است. مقايسه نتايج شبيه سازي ها با مقادير آزمايشگاهي و مقادير عددي منتشر شده در نشريات درستي نتايج شبيه سازي حاضر را تاييد کرد.

References   

1.        Wang, C., Wu, P.Y. and Chen, Z.Q., “Numerical analysis of double inlet pulse tube refrigerator”, Cryogenics, Vol. 33, (1993), 526530.

2.        Harvey, J.P., “Parametric Study of Cryocooler Regenerator Performance”, MSc. thesis, Georgia Institute of Technology, Atlanta, Ga., (1999).

3.        Siegel, R., “Influence of oscillation-induced diffusion on heat transfer in a uniformly heated channel”, Journal of Heat Transfer TRANS ASME, Vol. 109, (1987), 244–247.

4.        Khodadai, J.M., “Oscillatory fluid flow through a porous medium channel bounded by two impermeable parallel plates”, Journal of Fluids Engineering, Vol. 113, (1991), 509–511.

5.        Tanaka, M., Yamasihita, I. and Chisaka, F., JSME International Journal of Series II, Vol. 33, (1990), 283–289.

6.        Rawlins, W., “The Measurement and modeling of regenerator performance in an orifice pulse tube refrigerator”, PhD. thesis, University of Colorado, Boulder, (1992).

7.        Radebaugh, R., Gary, J., Marquardt, E., Louie, B., Daney, D., Arp, V. and Linenberger, D., “Measurement and calculation of regenerator ineffectiveness for temperatures of 5 to 40 K”, Wright Laboratory, WPAAFB, OH, USA WL-TR-92-3074, (1992).

 8.        Gedeon, D. and Wood, J., “Oscillatory-flow regenerator test rig: hardware and theory with derived correlations for screens and felts’, NASA Contractor Report 198442, (1997).

9.        Zhao, T.S. and Cheng, P., Cryogenics, Vol. 36, (1998), 1619–1626.

10.     Ju, Y.L., Wang, C. and Zhou, Y., “Numerical simulation and experimental verification of the oscillating flow in pulse tube refrigerator”, Cryogenics, Vol. 38, (1982), 169–176.

11.     Gedeon, D., “Sage pulse tube model-class reference guide”, Gedeon Associates, (1999).

12.     Jeong, S., Nam, K. and Jung, J., “Regenerator characterization under oscillating flow and pulsating pressure”, Cryocoolers , Vol. 12, (2002), 531–537.

13.     Nam, K. and Jeong, S., “Experimental study on the regenerator under actual operating conditions”, Advances in Cryogenic Engineering, Vol. 47, (2002), 977–984.

14.     Organ, A.J., “Thermodynamics and gas dynamics of the stirling cycle machine”, Cambridge University Press, (1992).

15.     Jeesung, C.J., “CFD simulation of multi-dimensional effects in inertance tube pulse tube cryocoolers”, MSc thesis, Georgia Institute of Technology, Atlanta, Ga., (2004).

16.     Etaati, M.A., “Numerical simulation of a three-stage stirling-type pulse-tube refrigerator”, PhD thesis, Eindhoven University of Technology, (2011).

17.     Brereton, G. and Mankbadi, R., “Review of recent advances in the study of unsteady turbulent internal flows, Appl. Mech. Rev., Vol. 48, (1995), 189–212,.

18.     Gifford, W.E. and Longsworth, R.C., “Surface heat pumping”, Advances in Cryogenic Engineering, Vol. 11, Plenum Press, New York, 171, (1968).

19.     Fluent INC. 2003. Fluent 6 User Manual.

20.     Organ, A.J., “The regenerator and stirling engine”, Cambridge University Press, (1997).

21.     Ibrahim, M. and Roy, T., “An initial non-equilibrium porous-media model for CFD simulation of Stirling regenerators”, AIAA, (2006).

22.     Yuan, K., Wang, L., Hou, Y.K. and et al., “Oscillating flow characteristics of a regenerator under low temperature conditions”, Cryocoolers 12, edited by R. G. Ross, Jr., wer Academic/Plenum Publishers, New York, (2003), 539–545.

23.     Taghilou, M, Ghadimi, B and Seyyedvalilu, M.H, “Optimization of double pipe fin-pin heat exchanger using entropy generation minimization”, International Journal of Engineering Transactions C: Aspects, Vol. 27, No 9 (2014), 1431-1438.

24.     Shamsi Kooshki, M , Gandjalikhan Nassab, S.A , Ansari, A.B “Investigation of entropy generation in a 3D laminar forced convection flow over a backward facing step with bleeding”, IJE Transactions A: Basics, Vol. 25, No 4 (2012), 379-388.

25.     Jafarian, A, Saidi M.H , Kazemzadeh Hannani, S. “Second law based analysis of fluid flow in the regenerator of pulse tube refrigerator”, International Journal of Engineering Transactions A: Basics, Vol. 21, No 2 (2008), 181-194.

26.     Robbert, A.A., “Cryogenic regenerative heat exchangers”, New York: Plenum Press, (1997), 48–54.

27.     Tao, Y.B. and Liu, Y.W., “Numerical analysis on pressure drop and heat transfer performance of mesh regenerators used in cryocoolers”, Cryogenics, Vol. 49, (2009), 497–503.


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir