IJE TRANSACTIONS C: Aspects Vol. 31, No. 9 (September 2018) 1480-1486    Article in Press

PDF URL: http://www.ije.ir/Vol31/No9/C/2-2899.pdf  
downloaded Downloaded: 14   viewed Viewed: 49

Tiara, T. E. Agustina and M. Faizal
( Received: November 10, 2017 – Accepted in Revised Form: July 01, 2018 )

Abstract    Rubber wood (Ficus elastica) is one of the biomass waste that can be used as raw material for gasification process, and has a calorific value of 4069 cal/g. Gasification is a process to convert a solid fuels to syngas (CO, CH4, and H2) through a partially combustion process using limited air between 20% to 40% of air stoichiometry. Depending on the direction of airflow, the gasifier are classified as updraft, downdraft, and cross-flow. The downdraft type of gasifier produces a lower tar content than updraft type.The gasification of rubber wood and rubber wood-coal mixture were carried out in this research. The purpose of the research is to determine the effect of Air Fuel Ratio (AFR) and temperature on calorific value and composition of syngas using a downdraft gasifier.The variations of AFR were 0.64, 0.95, and 1.26. The temperature of gasification was varied between 600-1000ºC. The result showed that the percentage of CO, H2, and CH4 decreased with increasing of AFR and decrease in calorific value. The calorific value of syngas increased along with the temperature.The use of coal in the gasification process can maintain the stable combustion temperatures and increase the syngas produced. The best-operating conditions in this research occurred at AFR of 0.64, temperature of 800ºC and use of coal as a stabilizer.At this condition, the percentage of syngas of 35.95% of CO, 15.95% of H2, 9.38% of CH4, and caloric value of 9.42 MJ/m3 was obtained. The highest gasification yield of 35.75% was also reached.


Keywords    Rubber Wood, Gasification, Downdraft Gasifier, Syngas, LHV



چوب لاستیک (Ficus elastica) یکی از زباله‌های زیست توده است که می‌تواند به عنوان مواد خام برای فرایند گازیفیکاسیون مورد استفاده قرار گیرد و مقدار کالری مصرفی آن 4069 کالری بر گرم است. گازیفیکاسیون فرایندی است که به وسیله یک فرآیند احتراق بخشی با استفاده از هوای محدود بین 20 تا 40 درصد از استوکیومتری هوا، سوخت جامد برای گاز سنتز (CO، CH4 و H2) را در اختیار دارد. بسته به جهت جریان هوا، گازسنج به عنوان جریان گاز بسوی بالا و یا بسوی پائین، و جریان متقابل دسته‌بندی می‌شود. نوع دیزل ژنراتور تولید محتوای کمتری نسبت به نوع جریان دارد. گازیفیکاسیون چوب لاستیکی و مخلوط چوب و چوب لاستیکی در این تحقیق انجام شد. هدف از تحقيق، تعيين تأثير نسبت سوخت هوايي (AFR) و دما بر ارزش حرارتي و ترکيب گاز سنتز با استفاده از گازسوز سازي در جهت پائین است. تغییرات AFR، 64/0، 95/0 و 26/1 بود. دمای گازسیون بین 600 تا 1000 درجه سانتی‌گراد متغیر بود. نتايج نشان داد که درصد CO، H2 و CH4 با افزايش AFR و کاهش ارزش کالري کاهش مي‌يابد. مقدار کالری گاز سنتز همراه با درجه حرارت افزایش می‌یابد. استفاده از زغال سنگ در فرایند گازیفیکاسیون می‌تواند دمای احتراق پایدار را حفظ و تولید همزمان گاز را افزایش دهد. بهترین شرایط در این تحقیق در AFR 64/0، دمای 800 درجه سانتی‌گراد و استفاده از زغال سنگ به عنوان یک تثبیت‌کننده انجام شد. در این شرایط درصد سنتز گازی 95/35% CO، 95/15% H2، 28/9% CH4 و مقدار کالری 42/9 MJ/m3 بدست آمد. بالاترین مقدار گازیفیکاسیون 75/35% نیز به دست آمده است.


1. Natthaya, P., Chaiyot, T. and Takayuki, T., “Low temperature gasification of coconut shell with CO2 and KOH: effects of temperature, chemical loading, and introduced carbonization step on the properties of syngas and porous carbon product”, International Journal of Chemical Engineering. Vol. 16, (2015), 481615. http://dx.doi.org/10.1155/2015/481615
2. Najjar, Y. S. H., “Gaseous pollutants formation and their harmful effects on health and environment”, Ashdin Publishing Innovative Energy Polices. Vol. 1, (2011), 1-8.
3. Volsky. and Smithart, “Handbook of Clean Energy System”,  Wiley, United Kingdom, (2011).
4. Kolur, M. M., Khalilarya, Sh., Jafarmadar, S. And Nemati, A., “Hydrogen and ethanol as potential alternative fuels compared to gasoline under improved exhaust gas resirculation”, International Journal of Engineering-Transactions C: Aspects, Vol. 27, No.3, (2014), 449-456. 
5. Akhilesh, K. and Ravindra, R.,“Experimental analysis of a producer gas generated by a chir pine needle (leaf) in a downdraft biomass gasifier”, Journal of Engineering Research and Applications, Vol. 4,(2014), 122-130.
6. Najafpour, G. D., Basu, R., Clausen, E. C. and Gaddy, J. L., “Bioreactor scale-up for water-gas shift reaction”, International Journal of Engineering, Vol. 9, No. 3, (1996), 121-129. 
7. Lahijani, P., Najafpour, G. D., and Mohammadi, M., “Influence of inherent alkali content and surface area of biomass char on its CO2 gasification reactivity”, Iranica Journal of Energy and Environment”, Vol. 8, No. 1, (2017), 1-5.
8. Tumuluru, J. S., Boardman, R. D., Wright, C. T., and Hess, J. R., “Some chemical composional changes in miscanthus and white oak sawdust sample during torrefaction”, Energies,  Vol. 5, No. 10, (2012), 3928-3947
9. Wang, Y., Yoshikawa, K., Namioka, T. And Hashimoto, Y., “Performance optimization of two-staged gasification system for woody biomass”, Fuel Process. Technol. Vol. 88, (2007), 243-250.
10. Directorate General of Plantation, “Indonesian rubber plantation statistic”, Jakarta, (2014).
11. Guswendar, R., “Characteristics of gasification on an updraft double gas outlet gasifier using rubber wood fuels”, Jakarta, Universitas Indonesia, (2012).
12. Reed, T. B. and Das, A., “Handbook downdraft gasifier engine systems”, Golden, CO : Solar Energy Research Institute, SERI/SP-271-3022, (1998), 140.
13. Pengmei, Lv., Yuan, Z., Ma L., Wu C., Chen, Y., and Zhu, J.,“Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier”, Renewable Energy, Vol. 32, issue 13, (2007), 2173-2185.
14. Ghani, W.A., Moghadam, Reza, Mohd Salleh, M. A. and Alias, A.B., “Air gasification of agricultural waste in a fluidized bed gasifier”, Hydrogen Production Performance, Vol. 2, (2009), 258-268.
15. Lahijani, P., Zainal, Z. A., Mohammadi, M., and Mohamed, A. R., “Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review”, Renewable and Sustainable Energy Reviews, Vol. 41, (2015), 615-632.
16. Lahijani, P. and Mohammadi, M., “Catalytic Effect of metal species on enhancement of CO2 gasification reactivity of biomass char”, International Journal of Engineering-Transactions C: Aspects Vol.28, No.9, (2015), 1251-1256
17. Diaz, M., Ilminnafik, N. and Mulyono, T., “Pengaruh air fuel ratio (AFR) terhadap kualitas syn-gas gasifikasi sekam padi tipe downdraft”, Universitas Jember, (2014).
18. Chen, W., Annamalai, K.,Ansley R. J., and Mirik, M. “Updraft fixed bed gasification of mesquite and juniper wood samples”, Energy, Vol. 41, (2012), 454-461.
19. Turn, S., Kinoshita, C., Zhang, Z., Ishimura, D. and Zhou, J., “An experimental investigation of hydrogen production from biomass gasification”, International Journal of Hydrogen Energy, Vol. 23, No. 8, (1998), 641-648.
20. Sommas, K. and Suneerat, P., “Gasification of high moisture rubber woodchip with rubber waste in a bubbling fluidized bed”, Fuel Processing Technology, Vol. 92, (2011), 671 – 677.
21. Marek, B., Lisy, Martin. and Stelcl, Ota., “The effect of temperature and residance time on the gasification process”, Acta Polytechnica Vol. 4 , No. 52, (2012).
22. Bidabadi, M., Mostafavi, S. A., Dizaji, F. F. and Dizaji, B. H., “An analytical model for flame propagation through moist lycopodium particles with non-unity lewis number”, International Journal of Engineering-Transaction B: Applications, Vol. 27, No. 5, (2014), 793-802

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir