IJE TRANSACTIONS C: Aspects Vol. 31, No. 9 (September 2018) 1575-1584    Article in Press

PDF URL: http://www.ije.ir/Vol31/No9/C/14-2879.pdf  
downloaded Downloaded: 11   viewed Viewed: 221

A. Shamekhi Amiri, S. Ali Torabi and R. Ghodsi
( Received: November 15, 2017 – Accepted in Revised Form: April 26, 2018 )

Abstract    In this paper, the strategic planning of a supply chain under a static chain-to-chain competition on the plane is addressed. It is assumed that each retailer has a coverage area called the radius of influence. The demand of each demand zone is divided equally between the retailers which can cover that market. However, the demand of distant customers who are not in the retailers’ radius of influence, will be lost. This competition is modelled for a real case application of a super-market chain. It is assumed that the chain’s owner wants to expand retail outlets to improve its market share. Since this expansion could affect the current customers of existing retailers, the owner wants to avoid attacking the market share of its current retailers. A bi-objective fuzzy mixed integer nonlinear model is proposed. For solving the model, it is first reformulated to a mixed integer linear program and then an interactive approach is devised to handle the fuzzy bi-objective model. Four expansion strategies are analysed from which useful managerial insights are drawn.


Keywords    Facility location on the plane, Chain-to-chain competition, Radius of influence, Cannibalization effect, Capacity planning, Multi-objective possibilistic programming



در این مقاله، برنامه‌ریزی راهبردی یک زنجیره تامین با در نظر گرفتن رقابت از نوع استاتیک زنجیره – در مقابل- زنجیره در یک فضای پیوسته مورد بررسی قرار گرفته است. فرض می‌شود که هر خرده‌فروش در این زنجیره دارای یک فضای پوشش است که به آن شعاع اثر گفته می‌شود. تقاضای مشتریان هر منطقه بین خرده‌فروشانی که آن منطقه را پوشش می‌دهند، به طور مساوی تقسیم می‌شود. همچنین، تقاضای مشتریانی که دورتر از شعاع اثر خرده فروشان هستند، از دست خواهد رفت. این رقابت برای یک کاربرد عملی در صنعت سوپرمارکت‌ها مدل شده است. فرض شده که مالک یک زنجیره تأمین موجود در نظر دارد تا ساختار زنجیره را برای افزایش سهم بازار توسعه دهد. از آنجا که برنامه توسعه ممکن است بر روی مشتریان فعلی خرده‌فروشان موجود همین زنجیره نیز اثر بگذارد، مالک زنجیره در نظر دارد تا از تهدید سهم بازار خرده‌فروشان موجود زنجیره اجتناب کند. یک مدل دو هدفه فازی غیرخطی عدد صحیح برای این مسئله پیشنهاد شده است. برای حل مدل، در ابتدا آن را تبدیل به یک مدل خطی نموده و سپس از یک متد تعاملی برای حل مدل خطی فازی دو هدفه استفاده شده است. چهار برنامه توسعه برای این زنجیره مورد تحلیل قرار گرفته شده که از آن‌ها نکات مدیریتی استخراج شده است.


1. Fernández, J., Pelegrı´n, B., Plastria, F., and Tóth, B., “Solving a Huff-like competitive location and design model for profit maximization in the plane”, European Journal of Operational Research,  Vol. 179, No. 3, (2007), 1274–1287.
2. Rezapour, S., Zanjirani Farahani, R., and Drezner, T., “Strategic design of competing supply chain networks for inelastic demand”, Journal of the Operational Research Society,  Vol. 62, No. 10, (2011), 1784–1795.
3. Drezner, T., Drezner, Z., and Kalczynski, P., “A cover-based competitive location model”, Journal of the Operational Research Society,  Vol. 62, No. 1, (2011), 100–113.
4. Berman, O., Drezner, Z., and Krass, D., “Generalized coverage: New developments in covering location models”, Computers & Operations Research,  Vol. 37, No. 10, (2010), 1675–1687.
5. Farahani, R.Z., Rezapour, S., Drezner, T., Esfahani, A.M., and Amiri-Aref, M., “Locating and capacity planning for retailers of a new supply chain to compete on the plane”, Journal of the Operational Research Society,  Vol. 66, No. 7, (2015), 1182–1205.
6. Fallah, H., Eskandari, H., and Pishvaee, M.S., “Competitive closed-loop supply chain network design under uncertainty”, Journal of Manufacturing Systems,  Vol. 37, No. 37, (2015), 649–661.
7. Rezapour, S., Farahani, R.Z., Fahimnia, B., Govindan, K., and Mansouri, Y., “Competitive closed-loop supply chain network design with price-dependent demands”, Journal of Cleaner Production,  Vol. 93, No. 93, (2015), 251–272.
8. Rezapour, S., and Zanjirani Farahani, R., “Supply chain network design under oligopolistic price and service level competition with foresight”, Computers & Industrial Engineering,  Vol. 72, No. 72, (2014), 129–142.
9. Rezapour, S., Farahani, R.Z., Dullaert, W., and De Borger, B., “Designing a new supply chain for competition against an existing supply chain”, Transportation Research Part E: Logistics and Transportation Review,  Vol. 67, No. 67, (2014), 124–140.
10. Rezapour, S., Farahani, R.Z., Ghodsipour, S.H., and Abdollahzadeh, S., “Strategic design of competing supply chain networks with foresight”, Advances in Engineering Software,  Vol. 42, No. 4, (2011), 130–141.
11. Rezapour, S., Farahani, R.Z., and Pourakbar, M., “Resilient supply chain network design under competition: A case study”, European Journal of Operational Research,  Vol. 259, No. 3, (2017), 1017–1035.
12. Rezapour, S., and Farahani, R.Z., “Strategic design of competing centralized supply chain networks for markets with deterministic demands”, Advances in Engineering Software,  Vol. 41, No. 5, (2010), 810–822.
13. Hafezalkotob, A., Makui, A., and Sadjadi, S.J., “Strategic and Tactical Design of Competing Decentralized Supply Chain Networks with Risk-Averse Participants for Markets with Uncertain Demand”, Mathematical Problems in Engineering,  Vol. 2011, , (2011), 1–27.
14. Shamekhi Amiri, A., Torabi, S.A., and Ghodsi, R., “An iterative approach for a bi-level competitive supply chain network design problem under foresight competition and variable coverage”, Transportation Research Part E: Logistics and Transportation Review,  Vol. 109, No. November 2017, (2018), 99–114.
15. Nagurney, A., “Supply chain network design under profit maximization and oligopolistic competition”, Transportation Research Part E: Logistics and Transportation Review,  Vol. 46, No. 3, (2010), 281–294.
16. Plastria, F., “Avoiding cannibalisation and/or competitor reaction in planar single facility location”, Journal of the Operations Research Society of Japan,  Vol. 48, No. 2, (2005), 148–157.
17. Drezner, T., “Derived attractiveness of shopping malls”, IMA Journal of Management Mathematics,  Vol. 17, No. 4, (2006), 349–358.
18. Drezner, T., Drezner, Z., and Kalczynski, P., “Strategic competitive location: improving existing and establishing new facilities”, Journal of the Operational Research Society,  Vol. 63, No. 12, (2012), 1720–1730.
19. Drezner, T., Drezner, Z., and Kalczynski, P., “A leader–follower model for discrete competitive facility location”, Computers & Operations Research,  Vol. 64, No. 64, (2015), 51–59.
20. Drezner, T., “Cannibalization in a Competitive Environment”, International Regional Science Review,  Vol. 34, No. 3, (2011), 306–322.
21. Aboolian, R., Berman, O., and Krass, D., “Competitive facility location and design problem”, European Journal of Operational Research,  Vol. 182, No. 1, (2007), 40–62.
22. Pelegrín, B., Fernández, P., and Pérez, M.D.G., “Profit maximization and reduction of the cannibalization effect in chain expansion”, Annals of Operations Research, , (2014), 1–19.
23. Jiménez, M., Arenas, M., Bilbao, A., and Rodrı´guez, M.V., “Linear programming with fuzzy parameters: An interactive method resolution”, European Journal of Operational Research,  Vol. 177, No. 3, (2007), 1599–1609.
24. Pishvaee, M.S., and Torabi, S.A., “A possibilistic programming approach for closed-loop supply chain network design under uncertainty”, Fuzzy Sets and Systems,  Vol. 161, No. 20, (2010), 2668–2683.
25. Torabi, S.A., and Madadi, M., “A Fuzzy Multi Objective Programming Model for Power Generation and Transmission Expansion Planning Problem”, International Journal of Engineering,  Vol. 23, No. 1, (2010), 29–39.
26. Torabi, S.A., and Hassini, E., “An interactive possibilistic programming approach for multiple objective supply chain master planning”, Fuzzy Sets and Systems,  Vol. 159, No. 2, (2008), 193–214.
27. Hafezalkotob, A., Babaei, M.S., Rasulibaghban, A., and Noori-Daryan, M., “Distribution design of two rival decenteralized supply chains: A two-person nonzero sum game theory approach”, International Journal of Engineering, Transactions B: Applications,  Vol. 27, No. 8, (2014), 1233–1242.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir