IJE TRANSACTIONS C: Aspects Vol. 31, No. 9 (September 2018) 1487-1497    Article in Press

PDF URL: http://www.ije.ir/Vol31/No9/C/3-2872.pdf  
downloaded Downloaded: 77   viewed Viewed: 776

A. Ardeshir, P. Farnood Ahmadi and H. Bayat
( Received: December 27, 2017 – Accepted in Revised Form: April 26, 2018 )

Abstract    The problem of insufficient data and uncertainty in modeling play a significant role in many engineering and management problems. Therefore, applying some techniques and decision-making processes is essential to attain proper solutions for aforementioned problems under accurate consideration. In this paper, an application of fuzzy inference system for modeling the indeterminacy involved in the problem of HSE risk assessment is presented. For this purpose, Failure Mode and Effect Analysis (FMEA), one of the most practical techniques with high reliability in HSE risk assessment is integrated with fuzzy inference system. The proposed model is executed according to the Mamdani algorithm and fuzzy logic toolbox of MATLAB software. With respect to a case study, a comparison between the proposed model and common FMEA risk assessment approach is made for prioritization of the HSE risks. The selected HSE risk factors which were analyzed are listed in three categories as follows: (a) health risks; (b) safety risks and (c) environmental risks. Based on the proposed model, falling and slipping of workers grouping with safety risks is ranked as the first serious risk with the risk priority number of 0.7938 and skin injury which is classified with health risks is considered as an inconsiderable risk with the lowest risk priority number of 0.0223. Ultimately, by applying the method on a case study, the results indicate that the proposed model by considering economic aspects as an intelligent risk evaluation tool provides more detailed and precise results.


Keywords    FMEA, Fuzzy Inference System, HSE Risk Assessment, Mamdani Algorithm, Construction Industry



مسئله عدم دسترسی به اطلاعات کافی و عدم قطعیت در مدل‌سازی، نقش قابل توجهی در بروز مشکلات مهندسی و مدیریتی ایفا می‌کند. از این‌رو، بکارگیری تکنیک‌ها و فرآیندهای تصمیم‌گیری به منظور دستیابی به راه‌حل‌های مطمئن برای حل مسائل موجود تحت یک سنجش دقیق ضروری است. در این مقاله، کاربرد یک سیستم خبره فازی (FIS) برای مدل‌سازی عدم قطعیت موجود در بررسی ریسک‌های HSE مورد تحلیل قرار گرفته است. برای رسیدن به این منظور، از ترکیب یک تکنیک کاربردی با قابلیت اطمینان بالا در تحلیل ریسک‌های HSE به نام روش تجزیه و تحلیل عوامل شکست (FMEA) و سیستم خبره فازی (FIS) استفاده شده است. مدل پیشنهادی بر اساس الگوریتم ممدانی و ابزار منطق فازی موجود در نرم‌افزار متلب اجرا می‌شود. با توجه به مطالعه موردی، مقایسه‌ای بین آنالیز ریسک‌های HSE بر اساس مدل پیشنهادی و روش متداول FMEA انجام شده است. ریسک‌های مورد بررسی در سه بخش ایمنی، بهداشت و سلامت، و محیط زیست دسته‌بندی شده‌اند. طبق نتایج بدست آمده از مدل پیشنهادی، لغزش و افتادن کارگران جدی‌ترین ریسک با اهمیت بالا شناخته شده است که نمره اولويت خطرپذيري آن برابر با 7938/0 می‌باشد. درحالی که جراحت پوستی به عنوان کم‌اهمیت‌ترین ریسک شناسایی شده است که نمره اولويت خطرپذيري آن 0223/0 بدست آمده است. در نهایت با بکارگیری مدل پیشنهادی در آنالیز ریسک‌های مطالعه موردی، نتایج بدست آمده نشان می‌دهند که مدل پیشنهادی به عنوان یک سیستم هوشمند ارزیاب ریسک با در نظر گرفتن جنبه‌های اقتصادی نتایج دقیق‌تری را ارائه می‌دهد.


1. Gholami, P.S., Nassiri, P., Yarahmadi, R., Hamidi, A., and Mirkazemi, R., “Assessment of Health Safety and Environment Management System function in contracting companies of one of the petro-chemistry industries in Iran, a case study”, Safety Science, Vol. 77, No. 77, (2015), 42–47.

2. Liao, C.-W., and Perng, Y.-H., “Data mining for occupational injuries in the Taiwan construction industry”, Safety Science, Vol. 46, No. 7, (2008), 1091–1102.

3. Fung, I.W.H., Tam, V.W.Y., Lo, T.Y., and Lu, L.L.H., “Developing a Risk Assessment Model for construction safety”, International Journal of Project Management, Vol. 28, No. 6, (2010), 593–600.

4. Roger M. Cooke, “Uncertainty modeling: examples and issues”, Safety Science,  Vol. 1–2, No. 26, (1997), 49–60.

5. Rezaian, S., and Jozi, S.A., “Health- Safety and Environmental Risk Assessment of Refineries Using of Multi Criteria Decision Making Method”, APCBEE Procedia, Vol. 3, No. 3, (2012), 235–238.

6. Dias, L., “Inspecting Occupational safety and health in the construction industry”, International Training Center (ITC), International Labor Organization (ILO), Turin, Italy, (2009).

7. Huang, X., and Hinze, J., “Owner’s Role in Construction Safety”, Journal of Construction Engineering and Management, Vol. 132, No. 2, (2006), 164–173.

8. Amir-Heidari, P., Maknoon, R., Taheri, B., and Bazyari, M., “A new framework for HSE performance measurement and monitoring”, Safety Science, Vol. 100, , (2017), 157–167.

9. Gurcanli, G.E., Bilir, S., and Sevim, M., “Activity based risk assessment and safety cost estimation for residential building construction projects”, Safety Science, Vol. 80, No. 80, (2015), 1–12.

10. McDonald, M., Musson, R., and Smith, R., Practical Guide to Defect Prevention, Microsoft Press, (2007).

11. Rhee, S.J., and Ishii, K., “Using cost based FMEA to enhance reliability and serviceability”, Advanced Engineering Informatics, Vol. 17, No. 3–4, (2003), 179–188.

12. Anand Pillay, J.W., “Modified failure mode and effects analysis using approximate reasoning”, Reliability Engineering and System Safety, Vol. 79, No. 1, (2003), 69–85.

13. Liu, C., Hwang, S., and Linو IK, “Safety Analysis of Combined FMEA and FTA with Computer Software Assistance–Take Photovoltaic Plant for Example”, IFAC Proceedings Volumes, Vol. 46, No. 9, (2013), 2151–2155.

14. Abdelgawad, M., and Fayek, A.R., “Comprehensive Hybrid Framework for Risk Analysis in the Construction Industry Using Combined Failure Mode and Effect Analysis, Fault Trees, Event Trees, and Fuzzy Logic”, Journal of Construction Engineering and Management, Vol. 138, No. 5, (2012), 642–651.

15. Zhang, Z., and Chu, X., “Risk prioritization in failure mode and effects analysis under uncertainty”, Expert Systems with Applications, Vol. 38, No. 1, (2011), 206–214.

16. Seifi Azad Mard, H.R., Estiri, A., Hadadi, P., and Seifi Azad Mard, M., “Occupational risk assessment in the construction industry in Iran”, International Journal of Occupational Safety and Ergonomics, Vol. 23, No. 4, (2017), 570–577.

17. Ardeshir, A., Mohajeri, M., and Amiri, M., “Evaluation of safety risks in construction using Fuzzy Failure Mode and EEect Analysis (FFMEA)”, Scientia Iranica A, Vol. 23, No. 6, (2016), 2546–2556.

18. Azadeh, A., Fam, I.M., Khoshnoud, M., and Nikafrouz, M., “Design and implementation of a fuzzy expert system for performance assessment of an integrated health, safety, environment (HSE) and ergonomics system: The case of a gas refinery”, Information Sciences, Vol. 178, No. 22, (2008), 4280–4300.

19. Amiri, M., Ardeshir, A., and Fazel Zarandi, M.H., “Fuzzy probabilistic expert system for occupational hazard assessment in construction”, Safety Science, Vol. 93, No. 93, (2017), 16–28.

20. Azadeh, A., Saberi, M., Rouzbahman, M., and Saberi, Z., “An intelligent algorithm for performance evaluation of job stress and HSE factors in petrochemical plants with noise and uncertainty”, Journal of Loss Prevention in the Process Industries, Vol. 26, No. 1, (2013), 140–152.

21. Loftizadeh, A., “Information and control”, Fuzzy sets, Vol. 8, No. 3, (1965), 338–353.

22. Mousavi, S.M., Gitinavard, H., and Vahdani, B., “Evaluating Construction Projects by a New Group Decision-Making Model Based on Intuitionistic Fuzzy Logic Concepts”, International Journal of Engineering - Transactions C: Aspects, Vol. 28, No. 9, (2015), 1312–1319.

23. Safari, A., Hosseini, R., and Mazinani, M., “A Novel Type-2 Adaptive Neuro Fuzzy Inference System Classifier for Modelling Uncertainty in Prediction of Air Pollution Disaster (RESEARCH NOTE)”, International Journal of Engineering - Transactions B: Applications, Vol. 30, No. 11, (2017), 1746–1751.

24. Kandel, A., Fuzzy expert systems, CRC Press, (1992).

25. Rogers, E. and Li, Y., Parallel Processing in a Control Systems Environment, Prentice Hall, (1993).

26. Jamshidi, A., Yazdani-Chamzini, A., Yakhchali, S.H., and Khaleghi, S., “Developing a new fuzzy inference system for pipeline risk assessment”, Journal of Loss Prevention in the Process Industries, Vol. 26, No. 1, (2013), 197–208.

27. Alvarez Grima, M., Bruines, P.A., and Verhoef, P.N.W., “Modeling tunnel boring machine performance by neuro-fuzzy methods”, Tunnelling and Underground Space Technology, Vol. 15, No. 3, (2000), 259–269.

28. Ghasemi, E., and Ataei, M., “Application of fuzzy logic for predicting roof fall rate in coal mines”, Neural Computing and Applications, Vol. 22, No. S1, (2013), 311–321.

29. Amindoust, A., Ahmed, S., Saghafinia, A., and Bahreininejad, A., “Sustainable supplier selection: A ranking model based on fuzzy inference system”, Applied Soft Computing, Vol. 12, No. 6, (2012), 1668–1677.

30. Aliakbari Nouri, F., and Shafiei Nikabadi, M., “Providing a fuzzy expert system to assess the maturity level of companies in manufacturing excellence in the food industry of iran”, International Journal of EngineeringTransaction A: Basics, Vol. 30, No. 4, (2017), 532–542.

31. Wang, Y.-M., Yang, J.-B., Xu, D.-L., and Chin, K.-S., “On the centroids of fuzzy numbers”, Fuzzy Sets and Systems, Vol. 157, No. 7, (2006), 919–926.

32. Wang, Y.-M., “Centroid defuzzification and the maximizing set and minimizing set ranking based on alpha level sets”, Computers & Industrial Engineering, Vol. 57, No. 1, (2009), 228–236.

33. Liu, H.-T., and Tsai, Y., “A fuzzy risk assessment approach for occupational hazards in the construction industry”, Safety Science, Vol. 50, No. 4, (2012), 1067–1078.

34. Veerasamy, R., Rajak, H., Jain, A., Sivadasan, S., Varghese, C.P., and Agrawal, R.K., “Ravichandran Veerasamy, et al : Validation of QSAR Models-Strategies and Importance Validation of QSAR Models-Strategies and Importance”, International Journal of Drug Design and Discovery , Vol. 2, No. 3, (2011), 511–519.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir