IJE TRANSACTIONS C: Aspects Vol. 30, No. 9 (September 2017) 1288-1297   

PDF URL: http://www.ije.ir/Vol30/No9/C/1-2573.pdf  
downloaded Downloaded: 349   viewed Viewed: 789

V. R. Kalatjari, A. Naghizadeh, R. Naderi and M. H. Talebpour
( Received: March 04, 2017 – Accepted in Revised Form: July 07, 2017 )

Abstract    The base level is among the effective parameters in determining the seismic force on a structure, if the equivalent-static method is used for analyzing a structure. It is obvious that the base level is located on foundation in buildings in which foundation is built in a single level and there is not any interaction between the structure's walls and the soil; however, in some buildings which have underground part, the foundation is built in two different levels which in turn makes the determination of the location of base level uncertain. Since no relevant recommendation has been provided in the seismic codes, this study tries to remove such uncertainties. For this purpose, the structural models along with foundation and their peripheral soil were modeled by the ABAQUS software and regarding the soil type it was tested by an artificial accelerogram compatible with the spectrum of the code. Two types of soil (stiff and soft) were used in this study. The results indicated that the base level location is considerably influenced by the soil type, the number of entrance columns leading to the underground and the number of stories of the structure.


Keywords    Base Level, Soil-Foundation-Structure Interaction, Different Foundation Levels, Artificial Accelerogram.


چکیده    چنانچه برای آنالیز یک سازه از روش استاتیکی معادل استفاده شود، تراز پایه از جمله پارامترهای مؤثر، در تعیین نیروی لرزه‌ای وارد بر سازه خواهد بود. در سازه‌هایی که در آنها فونداسیون در یک سطح اجرا می‌شود و هیچگونه اندرکنشی بین دیواره‌های سازه و خاک وجود ندارد، بدیهی است محل تراز پایه روی فونداسیون است؛ اما در برخی از ساختمان‌ها به دلیل وجود زیرزمین در قسمتی از سازه، فونداسیون در دو تراز متفاوت اجرا می‌شود که برای تعیین محل تراز پایه ابهاماتی به وجود آورده است. با توجه به آنکه در آیین‌نامه‌های لرزه‌ای پیشنهادی در این خصوص ارائه نشده است، در این مقاله سعی شده تا این ابهامات رفع شود. برای این منظور، مدل‌های سازه‌ای به همراه فونداسیون و محیط خاک اطراف آن، در نرم‌افزار ABAQUS مدل شده و با توجه به نوع خاک، تحت یک شتاب نگاشت مصنوعی منطبق بر طیف طرح آیین‌نامه 2800 قرار گرفته است. در این تحقیق از دو نوع خاک) نوع I و IV) استفاده شده است. نتایج نشان می‌دهد که محل تراز پایه شدیداً تحت تأثیر نوع خاک قرار دارد و در عین حال به تعداد ستون‌های ورودی به زیرزمین و تعداد طبقات سازه نیز وابسته است.


1.      Mita, A. and Luco, J.E., "Dynamic response of embedded foundations: A hybrid approach", Computer Methods in Applied Mechanics and Engineering,  Vol. 63, No. 3, (1987), 233-259.

2.      Dutta, S.C. and Roy, R., "A critical review on idealization and modeling for interaction among soil–foundation–structure system", Computers & Structures,  Vol. 80, No. 20, (2002), 1579-1594.

3.      Gazetas, G., "Formulas and charts for impedances of surface and embedded foundations", Journal of Geotechnical Engineering,  Vol. 117, No. 9, (1991), 1363-1381.

4.      Elias, W.J. and Khouri, M.F., "Identifying the fixed base location of building structures under seismic excitation".

5.      Code, U.B., "International conference of building officials", Whittier, CA,  (1997).

6.      Code, I.S., "Iranian code of practice for seismic resistant design of buildings". (2005), Standard.

7.      Tingjun, Y. and Linna, Z., "Finite element model of shape memory alloy incorporating drucker-prager model", Indonesian Journal of Electrical Engineering and Computer Science,  Vol. 11, No. 7, (2013), 3915-3924.

8.      Dolarevic, S. and Ibrahimbegovic, A., "A modified three-surface elasto-plastic cap model and its numerical implementation", Computers & Structures,  Vol. 85, No. 7, (2007), 419-430.

9.      Saberi, M., Behnamfar, F. and Vafaeian, M., "A continuum shell-beam finite element modeling of buried pipes with 90-degree elbow subjected to earthquake excitations", International Journal of Engineering-Transactions C: Aspects,  Vol. 28, No. 3, (2014), 338-345.

10.    Helwany, S., "Applied soil mechanics with abaqus applications, John Wiley & Sons,  (2007).

11.    Das, B.M., "Advanced soil mechanics, CRC Press,  (2013).

12.    Jesmani, M., Oskoorouchi, A. and Papp Jr, W., "Effects of degree of consolidation and anisotropic consolidation stresses on shear modulus and damping ratio of cohesive soils at low strain", International Journal of Engineering,  Vol. 13, No. 1, (2000), 27-36.

13.    Ching, J. and Phoon, K.-K., "Effect of element sizes in random field finite element simulations of soil shear strength", Computers & Structures,  Vol. 126, (2013), 120-134.

14.    Huang, J. and Griffiths, D., "Determining an appropriate finite element size for modelling the strength of undrained random soils", Computers and Geotechnics,  Vol. 69, (2015), 506-513.

15.    Nelson, R.B. and Muki, Y., "Boundary zone superposition method for linear and nonlinear dynamic analysis of infinite domain problems", in Dynamic Response of Structures, ASCE., 732-744.

16.    Moayyedian, M. and Shooshtari, A., "Proposed dynamic soil pressure diagram on rigid walls", International Journal of Engineering,  Vol. 21, (2008).

17.    Wolf, J. and Hall, W., "Soil-structure-interaction analysis in time domain, A Division of Simon & Schuster,  (1988).

18.    Lee, J.H. and Tassoulas, J.L., "Consistent transmitting boundary with continued-fraction absorbing boundary conditions for analysis of soil–structure interaction in a layered half-space", Computer Methods in Applied Mechanics and Engineering,  Vol. 200, No. 13, (2011), 1509-1525.

19.    Hognestad, E., "Study of combined bending and axial load in reinforced concrete members". (1951), University of Illinois at Urbana Champaign, College of Engineering. Engineering Experiment Station.

20.    Nematzadeh, M., Salari, A., Ghadami, J. and Naghipour, M., "Stress-strain behavior of freshly compressed concrete under axial compression with a practical equation", Construction and Building Materials,  Vol. 115, (2016), 402-423.

21.    Salmon, C.G. and Johnson, J.E., "Steel structures: Design and behavior: Emphasizing load and resistance factor design, Prentice Hall,  (1996).

22.             Fernandez, I., Bairan, J.M. and Marí, A.R., "3d fem model development from 3d optical measurement technique applied to corroded steel bars", Construction and Building Materials,  Vol. 124, (2016), 519-532.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir