Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 30, No. 9 (August 2017) 1375-1384    Article in Press

PDF URL: http://www.ije.ir/Vol30/No9/C/10.pdf  
downloaded Downloaded: 0   viewed Viewed: 51

  SOLVING CRITICAL PATH PROBLEM IN PROJECT NETWORK BY A NEW ENHANCED MOOSRA APPROACH WITH INTERVAL TYPE-2 FUZZY SETS
 
S.M. Mousavi, Y. Dorfeshan, B. Vahdani and V. Mohagheghi
 
( Received: February 17, 2017 – Accepted: July 07, 2017 )
 
 

Abstract    Decision making is an important issue in business and management that assists finding the optimal alternative from a number of feasible alternatives. Decision making requires adequate consideration of uncertainty in projects. In this paper, in order to address uncertainty of project environments, interval type-2 fuzzy sets (IT2FSs) are used. In other words, the rating of each alternative and weight of each criterion are expressed by IT2FSs. Moreover, for obtaining weight of criteria, interval type-2 fuzzy AHP method is employed. In addition, a new enhanced model of multi-objective optimization on the basis of simple ratio analysis (MOOSRA) method is developed with interval type-2 fuzzy relative preference relation. Finally, to illustrate applicability of the introduced approach, an existing application from literature is adopted and solved.

 

Keywords    Project critical path problem, Relative preference relation, Interval type-2 fuzzy sets (IT2FSs), MOOSRA method

 

چکیده    تصمیم‏ گیری یک مساله مهم در کسب و کار و مدیریت است که به پیدا کردن آلترناتیو بهینه از بین آلترناتیوهای شدنی کمک می‏کند. تصمیم‏گیری نیاز به توجه کافی به عدم قطعیت دارد. در این مقاله، به منظور مواجهه با عدم قطعیت‏های موجود در پروژه، مجموعه‏ های فازی نوع 2 بازه‏ای استفاده می‏شود. به عبارت دیگر ارزیابی آلترناتیوها و وزن هر معیار به صورت اعداد فازی نوع 2 بازه‏‏ای بیان می‏شود. علاوه بر این، برای به دست آوردن وزن معیارها از روش وزن دهی فازی نوع 2 بازه‏ ای AHP استفاده می‏شود. به علاوه، یک مدل ترکیبی از روش MOOSRA به همراه ارتباط اولویت نسبی فازی نوع 2 بازه‏ ای توسعه داده می‏شود. در انتها برای نشان داده قابلیت روش معرفی شده یک مثال کاربردی موجود در مرور ادبیات حل می‏شود.

References         Adalı, E. A., & Işık, A. T. (2016). The multi-objective decision making methods based on MULTIMOORA and MOOSRA for the laptop selection problem. Journal of Industrial Engineering International, 1-9.      Asan, U. M. U. T., Soyer, A., & Bozdag, E. (2016). An Interval Type-2 Fuzzy Prioritization Approach to Project Risk Assessment. Multiple-Valued Logic and Soft Computing26(6), 541-577.     Balezentiene, L., Streimikiene, D., & Balezentis, T. (2013). Fuzzy decision support methodology for sustainable energy crop selection. Renewable and Sustainable Energy Reviews, 17, 83-93.      Cevik Onar, S., Oztaysi, B., & Kahraman, C. (2014). Strategic decision selection using hesitant fuzzy TOPSIS and interval type-2 fuzzy AHP: a case study. International Journal of Computational intelligence systems, 7(5), 1002-1021.      Chen, C. T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy sets and systems, 114(1), 1-9.      Chen, S. M., & Lee, L. W. (2010). Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method. Expert systems with applications, 37(4), 2790-2798.      Chou, S. Y., Chang, Y. H., & Shen, C. Y. (2008). A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes. European Journal of Operational Research, 189(1), 132-145.        Delgado, M., Verdegay, J. L., & Vila, M. A. (1992). Linguistic decision‐making models. International Journal of Intelligent Systems, 7(5), 479-492.        Herrera, F., & Herrera-Viedma, E. (1996). A model of consensus in group decision making under linguistic assessments. Fuzzy sets and Systems, 78(1), 73-87.        Jagadish, Ray A (2014) Green cutting fluid selection using MOOSRA method. International Journal Research Engineering Technology 3(3):559–563.      Kiliç, M., & Kaya, İ. (2015). Investment project evaluation by a decision making methodology based on type-2 fuzzy sets. Applied Soft Computing, 27, 399-410.     Kumar, R., & Ray, A. (2015). Selection of Material Under Conflicting Situation Using Simple Ratio Optimization Technique. In Proceedings of Fourth International Conference on Soft Computing for Problem Solving. Springer India, 513-519.      Lee, H. S. (2005). On fuzzy preference relation in group decision making. International Journal of Computer Mathematics, 82(2), 133-140.      Liang, G. S. (1999). Fuzzy MCDM based on ideal and anti-ideal concepts. European Journal of Operational Research, 112(3), 682-691.       Mendel, J. M., John, R. I., & Liu, F. (2006). Interval type-2 fuzzy logic systems made simple. IEEE transactions on fuzzy systems, 14(6), 808-821.     Mendel, J. M. (2003). Type-2 fuzzy sets: some questions and answers. IEEE Connections, Newsletter of the IEEE Neural Networks Society, 1, 10-13.     Mohagheghi, V., Mousavi, S. M., & Vahdani, B. (2016). A New Multi-Objective Optimization Approach For Sustainable Project Portfolio Selection: A Realworld Application Under Interval-Valued Fuzzy Environment. Iranian Journal of Fuzzy Systems, 13(6), 41-68.      Öztaysi, B. (2015). A Group Decision Making Approach Using Interval Type-2 Fuzzy AHP for Enterprise Information Systems Project Selection. Multiple-Valued Logic and Soft Computing, 24(5-6), 475-500.      Raj, P. A., & Kumar, D. N. (1999). Ranking alternatives with fuzzy weights using maximizing set and minimizing set. Fuzzy Sets and Systems, 105(3), 365-375.       San Cristobal, J. R. (2012). Critical path definition using multi-criteria decision making: PROMETHEE method. Journal of Management in Engineering, 29(2), 158-163      Uçal Sarý, I., Öztayşi, B., & Kahraman, C. (2013). Fuzzy Analytic Hierarchy Process Using Type‐2 Fuzzy Sets: An Application to Warehouse Location Selection. Multicriteria Decision Aid and Artificial Intelligence, 285-308.     Wang, W., Liu, X., & Qin, Y. (2012). Multi-attribute group decision making models under interval type-2 fuzzy environment. Knowledge-Based Systems, 30, 121-128.        Wang, Y. J. (2014). A criteria weighting approach by combining fuzzy quality function deployment with relative preference relation. Applied Soft Computing, 14, 419-430.      Wang, Y. J. (2015). Ranking triangle and trapezoidal fuzzy numbers based on the relative preference relation. Applied mathematical modelling, 39(2), 586-599.      Wang, Y. J., & Lee, H. S. (2010). Evaluating financial performance of Taiwan container shipping companies by strength and weakness indices. International Journal of Computer Mathematics, 87(1), 38-52.      Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.      Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information sciences, 8(3), 199-249.       Zimmermann, H. J. (1987). Fuzzy set, decision making, and expert systems, International Series in Management Science. Operations Research, Kluwer Academic Publishing, Boston.      Zimmermann, H. J. (1991). Fuzzy set theory: And its applications, 2nd ed., Kluwer, boston, MA.


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir