Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 30, No. 9 (September 2017) 1391-1400   

PDF URL: http://www.ije.ir/Vol30/No9/C/12.pdf  
downloaded Downloaded: 25   viewed Viewed: 201

  OIL RESERVOIRS CLASSIFICATION USING FUZZY CLUSTERING (RESEARCH NOTE)
 
S. Askari
 
( Received: February 13, 2017 – Accepted in Revised Form: July 07, 2017 )
 
 

Abstract    Enhanced Oil Recovery (EOR) is a well-known method to increase oil production from oil reservoirs. Applying EOR to a new reservoir is a costly and time consuming process. Incorporating available knowledge of oil reservoirs in the EOR process eliminates these costs and saves operational time and work. This work presents a universal method to apply EOR to reservoirs based on the available data by clustering the data into compact and well-separated groups. A label is then assigned to each cluster which is in fact class of the data points belonging to that cluster. When EOR is intended to be applied to a new reservoir, class of the reservoir is determined and then EOR method used for the reservoirs of that class is applied to this one with no further field studies and operations. In contrast to classification, clustering is unsupervised and number of clusters within the data is not known a priori. Some well-known methods for determining number of clusters are tried but they failed. A novel method is presented in this work for number of clusters based on difference of membership grades of the data points in the clusters. It is applied to both synthetic and real life data including reservoirs data and it is shown that this method finds number of clusters accurately. It is also shown the raw data could be easily represented as fuzzy rule-base for better understanding and interpretation of the data.

 

Keywords    Enhanced oil recovery (EOR), oil reservoirs, fuzzy c-means (FCM), fuzzy clustering, outlier, possibilistic c-means (PCM)

 

چکیده    EOR یک روش شناخته شده برای ازدیاد تولید نفت از مخازن است و اعمال آن به یک مخزن جدید زمانبر و پرهزینه است. افزودن اطلاعات موجود مخازن به EOR باعث صرفه جویی در هزینه ها، زمان عملیات، و کار لازم می شود. این مقاله یک روش فراگیر برای اعمال EOR به مخازن براساس خوشه بندی داده های موجود به گروههای فشرده و متمایز ارایه می کند. سپس به هر خوشه یک برچسب اختصاص داده می شود که در واقع رده داده های متعلق به آن خوشه است. وقتی قرار است EOR به یک مخزن جدید اعمال شود، رده آن مخزن تعیین شده و سپس روش EOR ی که برای مخازن آن رده بکار رفته است بدون نیاز به مطالعات و عملیات بیشتر به این مخزن جدید اعمال می شود. برخلاف رده بندی، خوشه بندی بدون سرپرستی است و تعداد خوشه های موجود در داده ها نامعلوم است. تعدادی از روشهای معروف تعیین تعداد خوشه ها در این مقاله مورد استفاده قرار می گیرند اما نمی توانند تعداد خوشه ها در داده های مخازن را پیدا کنند. برای این منظور، یک روش جدید براساس تفاضل درجه عضویت داده ها در خوشه های مختلف ارایه شده و بر داده های فرضی و داده های واقعی مخازن اعمال شده و نشان داده می شود که این روش تعداد خوشه ها را بدرستی پیدا می کند. همچنین نشان داده می شود که برای درک و تفسیر بهتر داده های خام، می توان آنها را بسهولت به پایگاه قوانین فازی تبدیل کرد.

References   

1.      Mohsenzadeh, A., Escrochi, M., Afraz, M., Karimi, G., Al-Wahaibi, Y. and Ayatollahi, S., "Non-hydrocarbon gas injection followed by steam–gas co-injection for heavy oil recovery enhancement from fractured carbonate reservoirs", Journal of Petroleum Science and Engineering,  Vol. 144, (2016), 121-130.

2.      Mokhtari, R., Ashoori, S. and Seyyedattar, M., "Optimizing gas injection in reservoirs with compositional grading: A case study", Journal of Petroleum Science and Engineering,  Vol. 120, (2014), 225-238.

3.      Kovscek, A., "Emerging challenges and potential futures for thermally enhanced oil recovery", Journal of Petroleum Science and Engineering,  Vol. 98, (2012), 130-143.

4.      Pakzad, H., Alemzadeh, I. and Kazemii, A., "Encapsulation of peppermint oil with arabic gum-gelatin by complex coacervation method", International Journal of Engineering-Transactions B: Applications,  Vol. 26, No. 8, (2013), 807-815.

5.      Bakhtiari, L., Rezaie, H., Javadpour, J., Erfan, M. and Shokrgozar, M., "Effect of micellization pH on properties of sphere-like mesoporous hydroxyappatite", International Journal of Engineering-Transactions A: Basics,  Vol. 28, No. 7, (2015), 1068.

6.      Tanzifi, M., Kolaei, Z.T. and Roushani, M., "Characterization of polypyrrole-hydroxyethylcellulose/tio2 nanocomposite: Thermal properties and afm analysis", International Journal of Engineering-Transactions B: Applications,  Vol. 28, No. 5, (2014), 654-662.

7.      Morenov, V. and Leusheva, E., "Development of drilling mud solution for drilling in hard rocks", International Journal of Engineering, Transactions A: Basics,  Vol. 30, No. 620-626, (2017).

8.      Amani, H., "Study of enhanced oil recovery by rhamnolipids in a homogeneous 2d micromodel", Journal of Petroleum Science and Engineering,  Vol. 128, (2015), 212-219.

9.      Armstrong, R.T. and Wildenschild, D., "Investigating the pore-scale mechanisms of microbial enhanced oil recovery", Journal of Petroleum Science and Engineering,  Vol. 94, (2012), 155-164.

10.    Baldygin, A., Nobes, D.S. and Mitra, S.K., "Water-alternate-emulsion (wae): A new technique for enhanced oil recovery", Journal of Petroleum Science and Engineering,  Vol. 121, (2014), 167-173.

11.    Santanna, V., Curbelo, F., Dantas, T.C., Neto, A.D., Albuquerque, H. and Garnica, A., "Microemulsion flooding for enhanced oil recovery", Journal of Petroleum Science and Engineering,  Vol. 66, No. 3, (2009), 117-120.

12.    Demikhova, I.I., Likhanova, N.V., Perez, J.R.H., Falcon, D.A.L., Olivares-Xometl, O., Berthier, A.E.M. and Lijanova, I.V., "Emulsion flooding for enhanced oil recovery: Filtration model and numerical simulation", Journal of Petroleum Science and Engineering,  Vol. 143, (2016), 235-244.

13.    Hua, S., Liu, Y., Di, Q., Chen, Y. and Ye, F., "Experimental study of air foam flow in sand pack core for enhanced oil recovery", Journal of Petroleum Science and Engineering,  Vol. 135, (2015), 141-145.

14.    Cao, R., Yang, H., Sun, W. and Ma, Y.Z., "A new laboratory study on alternate injection of high strength foam and ultra-low interfacial tension foam to enhance oil recovery", Journal of Petroleum Science and Engineering,  Vol. 125, (2015), 75-89.

15.    Liu, D., Zhong, X., Shi, X., Qi, Y. and Qi, Y., "Enhanced oil recovery from fractured carbonate reservoir using membrane technology", Journal of Petroleum Science and Engineering,  Vol. 135, (2015), 10-15.

16.    Katterbauer, K., Arango, S., Sun, S. and Hoteit, I., "Enhanced heavy oil recovery for carbonate reservoirs integrating cross-well seismic–a synthetic wafra case study", Journal of Petroleum Science and Engineering,  Vol. 134, (2015), 1-13.

17.    Jeong, C., Kallivokas, L., Kucukcoban, S., Deng, W. and Fathi, A., "Maximization of wave motion within a hydrocarbon reservoir for wave-based enhanced oil recovery", Journal of Petroleum Science and Engineering,  Vol. 129, (2015), 205-220.

18.    Askari, S., Montazerin, N. and Zarandi, M.F., "High-frequency modeling of natural gas networks from low-frequency nodal meter readings using time-series disaggregation", IEEE Transactions on Industrial Informatics,  Vol. 12, No. 1, (2016), 136-147.

19.    Askari, S., Montazerin, N. and Zarandi, M.F., "Gas networks simulation from disaggregation of low frequency nodal gas consumption", Energy,  Vol. 112, (2016), 1286-1298.

20.    Pal, N.R., Pal, K., Keller, J.M. and Bezdek, J.C., "A possibilistic fuzzy c-means clustering algorithm", IEEE transactions on fuzzy systems,  Vol. 13, No. 4, (2005), 517-530.

21.    Askari, S., "A novel and fast mimo fuzzy inference system based on a class of fuzzy clustering algorithms with interpretability and complexity analysis", Expert Systems with Applications,  Vol. 84, (2017), 301-322.

22.    Askari, S. and Montazerin, N., "A high-order multi-variable fuzzy time series forecasting algorithm based on fuzzy clustering", Expert Systems with Applications,  Vol. 42, No. 4, (2015), 2121-2135.

23.    Chen, S.-M. and Tanuwijaya, K., "Multivariate fuzzy forecasting based on fuzzy time series and automatic clustering techniques", Expert Systems with Applications,  Vol. 38, No. 8, (2011), 10594-10605.

24.    Askari, S., Montazerin, N. and Zarandi, M.F., "A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of independent variables", Applied Soft Computing,  Vol. 35, (2015), 151-160.

25.    Askari, S., Montazerin, N. and Zarandi, M.F., "Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems", Energy,  Vol. 83, (2015), 252-266.

26.    Askari, S., Montazerin, N., Zarandi, M.F. and Hakimi, E., "Generalized entropy based possibilistic fuzzy c-means for clustering noisy data and its convergence proof", Neurocomputing,  Vol. 219, (2017), 186-202.

27.             Askari, S., Montazerin, N. and Zarandi, M.F., "Generalized possibilistic fuzzy c-means with novel cluster validity indices for clustering noisy data", Applied Soft Computing,  Vol. 53, (2017), 262-283.


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir